Cargando…
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher rep...
Autores principales: | Marouf, Mohamed, Machart, Pierre, Bansal, Vikas, Kilian, Christoph, Magruder, Daniel S., Krebs, Christian F., Bonn, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952370/ https://www.ncbi.nlm.nih.gov/pubmed/31919373 http://dx.doi.org/10.1038/s41467-019-14018-z |
Ejemplares similares
-
An Image Turing Test on Realistic Gastroscopy Images Generated by Using the Progressive Growing of Generative Adversarial Networks
por: Shin, Keewon, et al.
Publicado: (2023) -
Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images
por: Kazuhiro, Koshino, et al.
Publicado: (2018) -
DISCERN: deep single-cell expression reconstruction for improved cell clustering and cell subtype and state detection
por: Hausmann, Fabian, et al.
Publicado: (2023) -
Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
por: Li, Yuanming, et al.
Publicado: (2020) -
Robust Data Augmentation Generative Adversarial Network for Object Detection
por: Lee, Hyungtak, et al.
Publicado: (2022)