Cargando…

Assisted reproduction mediated resurrection of a feline model for Chediak-Higashi syndrome caused by a large duplication in LYST

Chediak-Higashi Syndrome (CHS) is a well-characterized, autosomal recessively inherited lysosomal disease caused by mutations in lysosomal trafficking regulator (LYST). The feline model for CHS was originally maintained for ~20 years. However, the colonies were disbanded and the CHS cat model was lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Buckley, R. M., Grahn, R. A., Gandolfi, B., Herrick, J. R., Kittleson, M. D., Bateman, H. L., Newsom, J., Swanson, W. F., Prieur, D. J., Lyons, L. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952417/
https://www.ncbi.nlm.nih.gov/pubmed/31919397
http://dx.doi.org/10.1038/s41598-019-56896-9
Descripción
Sumario:Chediak-Higashi Syndrome (CHS) is a well-characterized, autosomal recessively inherited lysosomal disease caused by mutations in lysosomal trafficking regulator (LYST). The feline model for CHS was originally maintained for ~20 years. However, the colonies were disbanded and the CHS cat model was lost to the research community before the causative mutation was identified. To resurrect the cat model, semen was collected and cryopreserved from a lone, fertile,  CHS carrier male. Using cryopreserved semen, laparoscopic oviductal artificial insemination was performed on three queens, two queens produced 11 viable kittens. To identify the causative mutation, a fibroblast cell line, derived from an affected cat from the original colony, was whole genome sequenced. Visual inspection of the sequence data identified a candidate causal variant as a ~20 kb tandem duplication within LYST, spanning exons 30 through to 38 (NM_001290242.1:c.8347-2422_9548 + 1749dup). PCR genotyping of the produced offspring demonstrated three individuals inherited the mutant allele from the CHS carrier male. This study demonstrated the successful use of cryopreservation and assisted reproduction to maintain and resurrect biomedical models and has defined the variant causing Chediak-Higashi syndrome in the domestic cat.