Cargando…
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
Data-independent acquisition (DIA) is an emerging technology for quantitative proteomic analysis of large cohorts of samples. However, sample-specific spectral libraries built by data-dependent acquisition (DDA) experiments are required prior to DIA analysis, which is time-consuming and limits the i...
Autores principales: | Yang, Yi, Liu, Xiaohui, Shen, Chengpin, Lin, Yu, Yang, Pengyuan, Qiao, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952453/ https://www.ncbi.nlm.nih.gov/pubmed/31919359 http://dx.doi.org/10.1038/s41467-019-13866-z |
Ejemplares similares
-
MSLibrarian: Optimized
Predicted Spectral Libraries
for Data-Independent Acquisition Proteomics
por: Isaksson, Marc, et al.
Publicado: (2022) -
DIALib-QC an assessment tool for spectral libraries in data-independent acquisition proteomics
por: Midha, Mukul K., et al.
Publicado: (2020) -
Use of Hybrid
Data-Dependent and -Independent Acquisition
Spectral Libraries Empowers Dual-Proteome Profiling
por: Willems, Patrick, et al.
Publicado: (2021) -
Calibr improves spectral library search for spectrum-centric analysis of data independent acquisition proteomics
por: Wang, Jen-Hung, et al.
Publicado: (2022) -
Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota
por: Zhao, Jinzhi, et al.
Publicado: (2023)