Cargando…
Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps
More efficient heat sinks are required due to the rapid increase of power density in microelectronic devices. In this study, a micro-array heat sink with stagger trapezoidal bumps was designed. Numerical simulations for the flow and heat transfer under various conditions were carried out to help us...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952959/ https://www.ncbi.nlm.nih.gov/pubmed/31817096 http://dx.doi.org/10.3390/mi10120845 |
_version_ | 1783486540474744832 |
---|---|
author | Wang, Ruijin Yuan, Weijia Wang, Jiawei Zhu, Zefei |
author_facet | Wang, Ruijin Yuan, Weijia Wang, Jiawei Zhu, Zefei |
author_sort | Wang, Ruijin |
collection | PubMed |
description | More efficient heat sinks are required due to the rapid increase of power density in microelectronic devices. In this study, a micro-array heat sink with stagger trapezoidal bumps was designed. Numerical simulations for the flow and heat transfer under various conditions were carried out to help us to fully understand the mechanisms of the heat transfer enhancement in such a heat sink. The effects of the structure of the heat sink, parameters of the bumps, and volume fraction of the nanofluid on the performance of heat sink were studied. The results show us that the bumps in the heat sink can result in chaotic convection, interrupting the thermal boundary layer and increasing the cooling area, subsequently improving the heat transfer performance. Furthermore, parametric investigations for trapezoidal bumps were conducted to obtain preferential values for parameters, such as the bump width, fore rake angle of the bump, bump height, and bump pitch. |
format | Online Article Text |
id | pubmed-6952959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69529592020-01-23 Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps Wang, Ruijin Yuan, Weijia Wang, Jiawei Zhu, Zefei Micromachines (Basel) Article More efficient heat sinks are required due to the rapid increase of power density in microelectronic devices. In this study, a micro-array heat sink with stagger trapezoidal bumps was designed. Numerical simulations for the flow and heat transfer under various conditions were carried out to help us to fully understand the mechanisms of the heat transfer enhancement in such a heat sink. The effects of the structure of the heat sink, parameters of the bumps, and volume fraction of the nanofluid on the performance of heat sink were studied. The results show us that the bumps in the heat sink can result in chaotic convection, interrupting the thermal boundary layer and increasing the cooling area, subsequently improving the heat transfer performance. Furthermore, parametric investigations for trapezoidal bumps were conducted to obtain preferential values for parameters, such as the bump width, fore rake angle of the bump, bump height, and bump pitch. MDPI 2019-12-04 /pmc/articles/PMC6952959/ /pubmed/31817096 http://dx.doi.org/10.3390/mi10120845 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Ruijin Yuan, Weijia Wang, Jiawei Zhu, Zefei Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps |
title | Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps |
title_full | Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps |
title_fullStr | Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps |
title_full_unstemmed | Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps |
title_short | Parametric Investigation on a Micro-Array Heat Sink with Staggered Trapezoidal Bumps |
title_sort | parametric investigation on a micro-array heat sink with staggered trapezoidal bumps |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952959/ https://www.ncbi.nlm.nih.gov/pubmed/31817096 http://dx.doi.org/10.3390/mi10120845 |
work_keys_str_mv | AT wangruijin parametricinvestigationonamicroarrayheatsinkwithstaggeredtrapezoidalbumps AT yuanweijia parametricinvestigationonamicroarrayheatsinkwithstaggeredtrapezoidalbumps AT wangjiawei parametricinvestigationonamicroarrayheatsinkwithstaggeredtrapezoidalbumps AT zhuzefei parametricinvestigationonamicroarrayheatsinkwithstaggeredtrapezoidalbumps |