Cargando…

Endoplasmic Reticulum Protein Disulfide Isomerase Shapes T Cell Efficacy for Adoptive Cellular Therapy of Tumors

Effective cancer therapies simultaneously restrict tumor cell growth and improve anti-tumor immune responses. Targeting redox-dependent protein folding enzymes within the endoplasmic reticulum (ER) is an alternative approach to activation of the unfolded protein response (UPR) and a novel therapeuti...

Descripción completa

Detalles Bibliográficos
Autores principales: Hurst, Katie E., Lawrence, Kiley A., Reyes Angeles, Lety, Ye, Zhiwei, Zhang, Jie, Townsend, Danyelle M., Dolloff, Nathan, Thaxton, Jessica E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953024/
https://www.ncbi.nlm.nih.gov/pubmed/31779147
http://dx.doi.org/10.3390/cells8121514
Descripción
Sumario:Effective cancer therapies simultaneously restrict tumor cell growth and improve anti-tumor immune responses. Targeting redox-dependent protein folding enzymes within the endoplasmic reticulum (ER) is an alternative approach to activation of the unfolded protein response (UPR) and a novel therapeutic platform to induce malignant cell death. E64FC26 is a recently identified protein disulfide isomerase (PDI) inhibitor that activates the UPR, oxidative stress, and apoptosis in tumor cells, but not normal cell types. Given that targeting cellular redox homeostasis is a strategy to augment T cell tumor control, we tested the effect of E64FC26 on healthy and oncogenic T cells. In stark contrast to the pro-UPR and pro-death effects we observed in malignant T cells, we found that E64FC26 improved viability and limited the UPR in healthy T cells. E64FC26 treatment also diminished oxidative stress and decreased global PDI expression in normal T cells. Oxidative stress and cell death are limited in memory T cells and we found that PDI inhibition promoted memory traits and reshaped T cell metabolism. Using adoptive transfer of tumor antigen-specific CD8 T cells, we demonstrate that T cells activated and expanded in the presence of E64FC26 control tumor growth better than vehicle-matched controls. Our data indicate that PDI inhibitors are a new class of drug that may dually inhibit tumor cell growth and improve T cell tumor control.