Cargando…

Optimization of Nozzle Inclination and Process Parameters in Air-Shielding Electrochemical Micromachining

Microstructures on metal surfaces with diameters of tens to hundreds of micrometers and depths of several micrometers to tens of micrometers can improve the performance of engineering parts. Air-shielding electrochemical micromachining (AS-EMM) is a promising method for fabricating these microstruct...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Minghuan, Shang, Yongchao, He, Kailei, Xu, Xuefeng, Chen, Guoda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953039/
https://www.ncbi.nlm.nih.gov/pubmed/31817116
http://dx.doi.org/10.3390/mi10120846
Descripción
Sumario:Microstructures on metal surfaces with diameters of tens to hundreds of micrometers and depths of several micrometers to tens of micrometers can improve the performance of engineering parts. Air-shielding electrochemical micromachining (AS-EMM) is a promising method for fabricating these microstructures, owing to its advantage of high efficient and better localization. However, the machining performance is often influenced by the machining or nonmachining parameters in AS-EMM. In order to get a better machining result in AS-EMM, the optimization of AS-EMM, including nozzle inclination and process parameters, was studied in this paper. Firstly, nozzle inclination was optimized by the different selected air incidence angles (θ) in simulation, and θ = π/4 was advised. Then, the grey relational analysis based on the orthogonal test method was used to analyze the grey relational grade for parameters and obtain the optimal parameter combination, i.e., at electrolyte velocity 5.5 m/s, gas velocity 160 m/s, and voltage 8 V. Finally, the optimization result was verified experimentally.