Cargando…
The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling
Lysyl oxidase (LOX) proteins comprise a family of five copper-dependent enzymes (LOX and four LOX-like isoenzymes (LOXL1–4)) critical for extracellular matrix (ECM) homeostasis and remodeling. The primary role of LOX enzymes is to oxidize lysyl and hydroxylysyl residues from collagen and elastin cha...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953057/ https://www.ncbi.nlm.nih.gov/pubmed/31766500 http://dx.doi.org/10.3390/cells8121483 |
_version_ | 1783486563662954496 |
---|---|
author | Rodríguez, Cristina Martínez-González, José |
author_facet | Rodríguez, Cristina Martínez-González, José |
author_sort | Rodríguez, Cristina |
collection | PubMed |
description | Lysyl oxidase (LOX) proteins comprise a family of five copper-dependent enzymes (LOX and four LOX-like isoenzymes (LOXL1–4)) critical for extracellular matrix (ECM) homeostasis and remodeling. The primary role of LOX enzymes is to oxidize lysyl and hydroxylysyl residues from collagen and elastin chains into highly reactive aldehydes, which spontaneously react with surrounding amino groups and other aldehydes to form inter- and intra-catenary covalent cross-linkages. Therefore, they are essential for the synthesis of a mature ECM and assure matrix integrity. ECM modulates cellular phenotype and function, and strikingly influences the mechanical properties of tissues. This explains the critical role of these enzymes in tissue homeostasis, and in tissue repair and remodeling. Cardiac ECM is mainly composed of fibrillar collagens which form a complex network that provides structural and biochemical support to cardiac cells and regulates cell signaling pathways. It is now becoming apparent that cardiac performance is affected by the structure and composition of the ECM and that any disturbance of the ECM contributes to cardiac disease progression. This review article compiles the major findings on the contribution of the LOX family to the development and progression of myocardial disorders. |
format | Online Article Text |
id | pubmed-6953057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69530572020-01-23 The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling Rodríguez, Cristina Martínez-González, José Cells Review Lysyl oxidase (LOX) proteins comprise a family of five copper-dependent enzymes (LOX and four LOX-like isoenzymes (LOXL1–4)) critical for extracellular matrix (ECM) homeostasis and remodeling. The primary role of LOX enzymes is to oxidize lysyl and hydroxylysyl residues from collagen and elastin chains into highly reactive aldehydes, which spontaneously react with surrounding amino groups and other aldehydes to form inter- and intra-catenary covalent cross-linkages. Therefore, they are essential for the synthesis of a mature ECM and assure matrix integrity. ECM modulates cellular phenotype and function, and strikingly influences the mechanical properties of tissues. This explains the critical role of these enzymes in tissue homeostasis, and in tissue repair and remodeling. Cardiac ECM is mainly composed of fibrillar collagens which form a complex network that provides structural and biochemical support to cardiac cells and regulates cell signaling pathways. It is now becoming apparent that cardiac performance is affected by the structure and composition of the ECM and that any disturbance of the ECM contributes to cardiac disease progression. This review article compiles the major findings on the contribution of the LOX family to the development and progression of myocardial disorders. MDPI 2019-11-21 /pmc/articles/PMC6953057/ /pubmed/31766500 http://dx.doi.org/10.3390/cells8121483 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Rodríguez, Cristina Martínez-González, José The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling |
title | The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling |
title_full | The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling |
title_fullStr | The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling |
title_full_unstemmed | The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling |
title_short | The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling |
title_sort | role of lysyl oxidase enzymes in cardiac function and remodeling |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953057/ https://www.ncbi.nlm.nih.gov/pubmed/31766500 http://dx.doi.org/10.3390/cells8121483 |
work_keys_str_mv | AT rodriguezcristina theroleoflysyloxidaseenzymesincardiacfunctionandremodeling AT martinezgonzalezjose theroleoflysyloxidaseenzymesincardiacfunctionandremodeling AT rodriguezcristina roleoflysyloxidaseenzymesincardiacfunctionandremodeling AT martinezgonzalezjose roleoflysyloxidaseenzymesincardiacfunctionandremodeling |