Cargando…

Numerical Study of Electro-Osmotic Fluid Flow and Vortex Formation

The phenomenon of electro-osmosis was studied by performing numerical simulations on the flow between parallel walls and at the nozzle microchannels. In this work, we propose a numerical approximation to perform simulations of vortex formation which occur after the passage of the fluid through an ab...

Descripción completa

Detalles Bibliográficos
Autores principales: Bezerra, Wesley De Souza, Castelo, Antonio, Afonso, Alexandre M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953093/
https://www.ncbi.nlm.nih.gov/pubmed/31757052
http://dx.doi.org/10.3390/mi10120796
Descripción
Sumario:The phenomenon of electro-osmosis was studied by performing numerical simulations on the flow between parallel walls and at the nozzle microchannels. In this work, we propose a numerical approximation to perform simulations of vortex formation which occur after the passage of the fluid through an abrupt contraction at the microchannel. The motion of the charges in the solution is described by the Poisson–Nernst–Planck equations and used the generalized finite differences to solve the numerical problem. First, solutions for electro-osmotic flow were obtained for the Phan–Thien/Thanner model in a parallel walls channel. Later simulations for electro-osmotic flow were performed in a nozzle. The formation of vortices near the contraction within the nozzle was verified by taking into account a flow perturbation model.