Cargando…
Machine Learning Approaches for the Prioritization of Genomic Variants Impacting Pre-mRNA Splicing
Defects in pre-mRNA splicing are frequently a cause of Mendelian disease. Despite the advent of next-generation sequencing, allowing a deeper insight into a patient’s variant landscape, the ability to characterize variants causing splicing defects has not progressed with the same speed. To address t...
Autores principales: | Rowlands, Charlie F, Baralle, Diana, Ellingford, Jamie M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953098/ https://www.ncbi.nlm.nih.gov/pubmed/31779139 http://dx.doi.org/10.3390/cells8121513 |
Ejemplares similares
-
Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders
por: Rowlands, Charlie, et al.
Publicado: (2021) -
CI-SpliceAI—Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites
por: Strauch, Yaron, et al.
Publicado: (2022) -
MRSD: A quantitative approach for assessing suitability of RNA-seq in the investigation of mis-splicing in Mendelian disease
por: Rowlands, Charlie F., et al.
Publicado: (2022) -
Disease modeling of core pre-mRNA splicing factor haploinsufficiency
por: Wood, Katherine A, et al.
Publicado: (2019) -
Pre-mRNA splicing factor U2AF2 recognizes distinct conformations of
nucleotide variants at the center of the pre-mRNA splice site
signal
por: Glasser, Eliezra, et al.
Publicado: (2022)