Cargando…
Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations
BACKGROUND: Gene regulatory networks (GRNs) can be inferred from both gene expression data and genetic perturbations. Under different conditions, the gene data of the same gene set may be different from each other, which results in different GRNs. Detecting structural difference between GRNs under d...
Autores principales: | Li, Yan, Liu, Dayou, Li, Tengfei, Zhu, Yungang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953167/ https://www.ncbi.nlm.nih.gov/pubmed/31918656 http://dx.doi.org/10.1186/s12859-019-3314-3 |
Ejemplares similares
-
Applying dynamic Bayesian networks to perturbed gene expression data
por: Dojer, Norbert, et al.
Publicado: (2006) -
Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations
por: Cai, Xiaodong, et al.
Publicado: (2013) -
Fast Bayesian inference for gene regulatory networks using ScanBMA
por: Young, William Chad, et al.
Publicado: (2014) -
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
por: Penfold, Christopher A., et al.
Publicado: (2012) -
Identification of genetic interaction networks via an evolutionary algorithm evolved Bayesian network
por: Li, Ruowang, et al.
Publicado: (2016)