Cargando…

Trichome regulator SlMIXTA‐like directly manipulates primary metabolism in tomato fruit

Trichomes are storage compartments for specialized metabolites in many plant species. In trichome, plant primary metabolism is significantly changed, providing substrates for downstream secondary metabolism. However, little is known of how plants coordinate trichome formation and primary metabolism...

Descripción completa

Detalles Bibliográficos
Autores principales: Ying, Shiyu, Su, Min, Wu, Yu, Zhou, Lu, Fu, Rao, Li, Yan, Guo, Hao, Luo, Jie, Wang, Shouchuang, Zhang, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953195/
https://www.ncbi.nlm.nih.gov/pubmed/31254436
http://dx.doi.org/10.1111/pbi.13202
Descripción
Sumario:Trichomes are storage compartments for specialized metabolites in many plant species. In trichome, plant primary metabolism is significantly changed, providing substrates for downstream secondary metabolism. However, little is known of how plants coordinate trichome formation and primary metabolism regulation. In this report, tomato (Solanum lycopersicum) trichome regulator SlMIXTA‐like is indicated as a metabolic regulation gene by mGWAS analysis. Overexpression of SlMIXTA‐like in tomato fruit enhances trichome formation. In addition, SlMIXTA‐like can directly bind to the promoter region of gene encoding 3‐deoxy‐7‐phosphoheptulonate synthase (SlDAHPS) to activate its expression. Induction of SlDAHPS expression enhances shikimate pathway activities and provides substrates for downstream secondary metabolism. Our data provide direct evidence that trichome regulator can directly manipulate primary metabolism, in which way plants can coordinate metabolic regulation and the formation of storage compartments for specialized metabolites. The newly identified SlMIXTA‐like can be used for future metabolic engineering.