Cargando…
Multiset sparse partial least squares path modeling for high dimensional omics data analysis
BACKGROUND: Recent technological developments have enabled the measurement of a plethora of biomolecular data from various omics domains, and research is ongoing on statistical methods to leverage these omics data to better model and understand biological pathways and genetic architectures of comple...
Autores principales: | Csala, Attila, Zwinderman, Aeilko H., Hof, Michel H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953292/ https://www.ncbi.nlm.nih.gov/pubmed/31918677 http://dx.doi.org/10.1186/s12859-019-3286-3 |
Ejemplares similares
-
Multiset sparse redundancy analysis for high‐dimensional omics data
por: Csala, Attila, et al.
Publicado: (2018) -
Penalized partial least squares for pleiotropy
por: Broc, Camilo, et al.
Publicado: (2021) -
Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks
por: Waaijenborg, Sandra, et al.
Publicado: (2009) -
A variant of sparse partial least squares for variable selection and data exploration
por: Olson Hunt, Megan J., et al.
Publicado: (2014) -
A multiple hold-out framework for Sparse Partial Least Squares
por: Monteiro, João M., et al.
Publicado: (2016)