Cargando…

Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires

[Image: see text] We show a hard superconducting gap in a Ge–Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the s...

Descripción completa

Detalles Bibliográficos
Autores principales: Ridderbos, Joost, Brauns, Matthias, de Vries, Folkert K., Shen, Jie, Li, Ang, Kölling, Sebastian, Verheijen, Marcel A., Brinkman, Alexander, van der Wiel, Wilfred G., Bakkers, Erik P. A. M., Zwanenburg, Floris A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953474/
https://www.ncbi.nlm.nih.gov/pubmed/31771328
http://dx.doi.org/10.1021/acs.nanolett.9b03438
_version_ 1783486631622213632
author Ridderbos, Joost
Brauns, Matthias
de Vries, Folkert K.
Shen, Jie
Li, Ang
Kölling, Sebastian
Verheijen, Marcel A.
Brinkman, Alexander
van der Wiel, Wilfred G.
Bakkers, Erik P. A. M.
Zwanenburg, Floris A.
author_facet Ridderbos, Joost
Brauns, Matthias
de Vries, Folkert K.
Shen, Jie
Li, Ang
Kölling, Sebastian
Verheijen, Marcel A.
Brinkman, Alexander
van der Wiel, Wilfred G.
Bakkers, Erik P. A. M.
Zwanenburg, Floris A.
author_sort Ridderbos, Joost
collection PubMed
description [Image: see text] We show a hard superconducting gap in a Ge–Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at 180 °C during which aluminum interdiffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (T(C) = 0.9 K) and a higher critical field (B(C) = 0.9–1.2 T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (T(C) = 2.9 K) and critical field (B(C) = 3.4 T) is found. The small size of these diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction.
format Online
Article
Text
id pubmed-6953474
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-69534742020-01-13 Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires Ridderbos, Joost Brauns, Matthias de Vries, Folkert K. Shen, Jie Li, Ang Kölling, Sebastian Verheijen, Marcel A. Brinkman, Alexander van der Wiel, Wilfred G. Bakkers, Erik P. A. M. Zwanenburg, Floris A. Nano Lett [Image: see text] We show a hard superconducting gap in a Ge–Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at 180 °C during which aluminum interdiffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (T(C) = 0.9 K) and a higher critical field (B(C) = 0.9–1.2 T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (T(C) = 2.9 K) and critical field (B(C) = 3.4 T) is found. The small size of these diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction. American Chemical Society 2019-11-26 2020-01-08 /pmc/articles/PMC6953474/ /pubmed/31771328 http://dx.doi.org/10.1021/acs.nanolett.9b03438 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Ridderbos, Joost
Brauns, Matthias
de Vries, Folkert K.
Shen, Jie
Li, Ang
Kölling, Sebastian
Verheijen, Marcel A.
Brinkman, Alexander
van der Wiel, Wilfred G.
Bakkers, Erik P. A. M.
Zwanenburg, Floris A.
Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires
title Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires
title_full Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires
title_fullStr Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires
title_full_unstemmed Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires
title_short Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires
title_sort hard superconducting gap and diffusion-induced superconductors in ge–si nanowires
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953474/
https://www.ncbi.nlm.nih.gov/pubmed/31771328
http://dx.doi.org/10.1021/acs.nanolett.9b03438
work_keys_str_mv AT ridderbosjoost hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT braunsmatthias hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT devriesfolkertk hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT shenjie hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT liang hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT kollingsebastian hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT verheijenmarcela hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT brinkmanalexander hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT vanderwielwilfredg hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT bakkerserikpam hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires
AT zwanenburgflorisa hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires