Cargando…
Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires
[Image: see text] We show a hard superconducting gap in a Ge–Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the s...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953474/ https://www.ncbi.nlm.nih.gov/pubmed/31771328 http://dx.doi.org/10.1021/acs.nanolett.9b03438 |
_version_ | 1783486631622213632 |
---|---|
author | Ridderbos, Joost Brauns, Matthias de Vries, Folkert K. Shen, Jie Li, Ang Kölling, Sebastian Verheijen, Marcel A. Brinkman, Alexander van der Wiel, Wilfred G. Bakkers, Erik P. A. M. Zwanenburg, Floris A. |
author_facet | Ridderbos, Joost Brauns, Matthias de Vries, Folkert K. Shen, Jie Li, Ang Kölling, Sebastian Verheijen, Marcel A. Brinkman, Alexander van der Wiel, Wilfred G. Bakkers, Erik P. A. M. Zwanenburg, Floris A. |
author_sort | Ridderbos, Joost |
collection | PubMed |
description | [Image: see text] We show a hard superconducting gap in a Ge–Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at 180 °C during which aluminum interdiffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (T(C) = 0.9 K) and a higher critical field (B(C) = 0.9–1.2 T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (T(C) = 2.9 K) and critical field (B(C) = 3.4 T) is found. The small size of these diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction. |
format | Online Article Text |
id | pubmed-6953474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69534742020-01-13 Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires Ridderbos, Joost Brauns, Matthias de Vries, Folkert K. Shen, Jie Li, Ang Kölling, Sebastian Verheijen, Marcel A. Brinkman, Alexander van der Wiel, Wilfred G. Bakkers, Erik P. A. M. Zwanenburg, Floris A. Nano Lett [Image: see text] We show a hard superconducting gap in a Ge–Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at 180 °C during which aluminum interdiffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (T(C) = 0.9 K) and a higher critical field (B(C) = 0.9–1.2 T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (T(C) = 2.9 K) and critical field (B(C) = 3.4 T) is found. The small size of these diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction. American Chemical Society 2019-11-26 2020-01-08 /pmc/articles/PMC6953474/ /pubmed/31771328 http://dx.doi.org/10.1021/acs.nanolett.9b03438 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Ridderbos, Joost Brauns, Matthias de Vries, Folkert K. Shen, Jie Li, Ang Kölling, Sebastian Verheijen, Marcel A. Brinkman, Alexander van der Wiel, Wilfred G. Bakkers, Erik P. A. M. Zwanenburg, Floris A. Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires |
title | Hard Superconducting
Gap and Diffusion-Induced Superconductors
in Ge–Si Nanowires |
title_full | Hard Superconducting
Gap and Diffusion-Induced Superconductors
in Ge–Si Nanowires |
title_fullStr | Hard Superconducting
Gap and Diffusion-Induced Superconductors
in Ge–Si Nanowires |
title_full_unstemmed | Hard Superconducting
Gap and Diffusion-Induced Superconductors
in Ge–Si Nanowires |
title_short | Hard Superconducting
Gap and Diffusion-Induced Superconductors
in Ge–Si Nanowires |
title_sort | hard superconducting
gap and diffusion-induced superconductors
in ge–si nanowires |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953474/ https://www.ncbi.nlm.nih.gov/pubmed/31771328 http://dx.doi.org/10.1021/acs.nanolett.9b03438 |
work_keys_str_mv | AT ridderbosjoost hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT braunsmatthias hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT devriesfolkertk hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT shenjie hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT liang hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT kollingsebastian hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT verheijenmarcela hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT brinkmanalexander hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT vanderwielwilfredg hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT bakkerserikpam hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires AT zwanenburgflorisa hardsuperconductinggapanddiffusioninducedsuperconductorsingesinanowires |