Cargando…

Investigation of Mg–Zn–Y–Nd alloy for potential application of biodegradable esophageal stent material

In recent years, due to unhealthy dietary habits and other reasons, advanced esophageal cancer patients are on the rise, threatening human health and life safety at all times. Stents implantation as an important complementary or alternative method for chemotherapy has been widely applied in clinics....

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shuo, Zhang, Xueqi, Li, Jingan, Liu, Changsheng, Guan, Shaokang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953596/
https://www.ncbi.nlm.nih.gov/pubmed/31938756
http://dx.doi.org/10.1016/j.bioactmat.2020.01.002
Descripción
Sumario:In recent years, due to unhealthy dietary habits and other reasons, advanced esophageal cancer patients are on the rise, threatening human health and life safety at all times. Stents implantation as an important complementary or alternative method for chemotherapy has been widely applied in clinics. However, the adhesion and proliferation of pathological cells, such as tumor cells, fibroblasts and epithelial cells, may interfere the efficacy of stents. Further multiple implantation due to restenosis may also bring pain to patients. In this contribution, we preferred a biodegradable material Mg–Zn–Y–Nd alloy for potential application of esophageal stent. The hardness testing showed that Mg–Zn–Y–Nd alloy owned less mechanical properties compared with the commercial esophageal stents material, 317L stainless steel (317L SS), while Mg–Zn–Y–Nd displayed significantly better biodegradation than 317L SS. Cell apoptosis assay indicated Mg–Zn–Y–Nd inhibited adhesion and proliferation of tumor cells, fibroblasts and epithelial cells. Our research suggested potential application of Mg–Zn–Y–Nd alloy as a novel material for biodegradable esophageal stent.