Cargando…

Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis

BACKGROUND: Autosomal recessive osteopetrosis is a rare skeletal disorder with increased bone density due to a failure in osteoclast bone resorption. In most cases, the defect is cell-autonomous, and >50% of patients bear mutations in the TCIRG1 gene, encoding for a subunit of the vacuolar proton...

Descripción completa

Detalles Bibliográficos
Autores principales: Palagano, Eleonora, Muggeo, Sharon, Crisafulli, Laura, Tourkova, Irina L., Strina, Dario, Mantero, Stefano, Fontana, Elena, Locatelli, Silvia L., Monari, Marta, Morenghi, Emanuela, Carlo-Stella, Carmelo, Barnett, John B., Blair, Harry C., Vezzoni, Paolo, Villa, Anna, Sobacchi, Cristina, Ficara, Francesca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953598/
https://www.ncbi.nlm.nih.gov/pubmed/31938717
http://dx.doi.org/10.1016/j.bonr.2020.100242
_version_ 1783486648904843264
author Palagano, Eleonora
Muggeo, Sharon
Crisafulli, Laura
Tourkova, Irina L.
Strina, Dario
Mantero, Stefano
Fontana, Elena
Locatelli, Silvia L.
Monari, Marta
Morenghi, Emanuela
Carlo-Stella, Carmelo
Barnett, John B.
Blair, Harry C.
Vezzoni, Paolo
Villa, Anna
Sobacchi, Cristina
Ficara, Francesca
author_facet Palagano, Eleonora
Muggeo, Sharon
Crisafulli, Laura
Tourkova, Irina L.
Strina, Dario
Mantero, Stefano
Fontana, Elena
Locatelli, Silvia L.
Monari, Marta
Morenghi, Emanuela
Carlo-Stella, Carmelo
Barnett, John B.
Blair, Harry C.
Vezzoni, Paolo
Villa, Anna
Sobacchi, Cristina
Ficara, Francesca
author_sort Palagano, Eleonora
collection PubMed
description BACKGROUND: Autosomal recessive osteopetrosis is a rare skeletal disorder with increased bone density due to a failure in osteoclast bone resorption. In most cases, the defect is cell-autonomous, and >50% of patients bear mutations in the TCIRG1 gene, encoding for a subunit of the vacuolar proton pump essential for osteoclast resorptive activity. The only cure is hematopoietic stem cell transplantation, which corrects the bone pathology by allowing the formation of donor-derived functional osteoclasts. Therapeutic approaches using patient-derived cells corrected ex vivo through viral transduction or gene editing can be considered, but to date functional rescue cannot be demonstrated in vivo because a relevant animal model for xenotransplant is missing. METHODS: We generated a new mouse model, which we named NSG oc/oc, presenting severe autosomal recessive osteopetrosis owing to the Tcirg1(oc) mutation, and profound immunodeficiency caused by the NSG background. We performed neonatal murine bone marrow transplantation and xenotransplantation with human CD34(+) cells. RESULTS: We demonstrated that neonatal murine bone marrow transplantation rescued NSG oc/oc mice, in line with previous findings in the oc/oc parental strain and with evidence from clinical practice in humans. Importantly, we also demonstrated human cell chimerism in the bone marrow of NSG oc/oc mice transplanted with human CD34(+) cells. The severity and rapid progression of the disease in the mouse model prevented amelioration of the bone pathology; nevertheless, we cannot completely exclude that minor early modifications of the bone tissue might have occurred. CONCLUSION: Our work paves the way to generating an improved xenograft model for in vivo evaluation of functional rescue of patient-derived corrected cells. Further refinement of the newly generated mouse model will allow capitalizing on it for an optimized exploitation in the path to novel cell therapies.
format Online
Article
Text
id pubmed-6953598
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69535982020-01-14 Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis Palagano, Eleonora Muggeo, Sharon Crisafulli, Laura Tourkova, Irina L. Strina, Dario Mantero, Stefano Fontana, Elena Locatelli, Silvia L. Monari, Marta Morenghi, Emanuela Carlo-Stella, Carmelo Barnett, John B. Blair, Harry C. Vezzoni, Paolo Villa, Anna Sobacchi, Cristina Ficara, Francesca Bone Rep Article BACKGROUND: Autosomal recessive osteopetrosis is a rare skeletal disorder with increased bone density due to a failure in osteoclast bone resorption. In most cases, the defect is cell-autonomous, and >50% of patients bear mutations in the TCIRG1 gene, encoding for a subunit of the vacuolar proton pump essential for osteoclast resorptive activity. The only cure is hematopoietic stem cell transplantation, which corrects the bone pathology by allowing the formation of donor-derived functional osteoclasts. Therapeutic approaches using patient-derived cells corrected ex vivo through viral transduction or gene editing can be considered, but to date functional rescue cannot be demonstrated in vivo because a relevant animal model for xenotransplant is missing. METHODS: We generated a new mouse model, which we named NSG oc/oc, presenting severe autosomal recessive osteopetrosis owing to the Tcirg1(oc) mutation, and profound immunodeficiency caused by the NSG background. We performed neonatal murine bone marrow transplantation and xenotransplantation with human CD34(+) cells. RESULTS: We demonstrated that neonatal murine bone marrow transplantation rescued NSG oc/oc mice, in line with previous findings in the oc/oc parental strain and with evidence from clinical practice in humans. Importantly, we also demonstrated human cell chimerism in the bone marrow of NSG oc/oc mice transplanted with human CD34(+) cells. The severity and rapid progression of the disease in the mouse model prevented amelioration of the bone pathology; nevertheless, we cannot completely exclude that minor early modifications of the bone tissue might have occurred. CONCLUSION: Our work paves the way to generating an improved xenograft model for in vivo evaluation of functional rescue of patient-derived corrected cells. Further refinement of the newly generated mouse model will allow capitalizing on it for an optimized exploitation in the path to novel cell therapies. Elsevier 2020-01-07 /pmc/articles/PMC6953598/ /pubmed/31938717 http://dx.doi.org/10.1016/j.bonr.2020.100242 Text en © 2020 Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Palagano, Eleonora
Muggeo, Sharon
Crisafulli, Laura
Tourkova, Irina L.
Strina, Dario
Mantero, Stefano
Fontana, Elena
Locatelli, Silvia L.
Monari, Marta
Morenghi, Emanuela
Carlo-Stella, Carmelo
Barnett, John B.
Blair, Harry C.
Vezzoni, Paolo
Villa, Anna
Sobacchi, Cristina
Ficara, Francesca
Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis
title Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis
title_full Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis
title_fullStr Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis
title_full_unstemmed Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis
title_short Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis
title_sort generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953598/
https://www.ncbi.nlm.nih.gov/pubmed/31938717
http://dx.doi.org/10.1016/j.bonr.2020.100242
work_keys_str_mv AT palaganoeleonora generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT muggeosharon generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT crisafullilaura generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT tourkovairinal generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT strinadario generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT manterostefano generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT fontanaelena generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT locatellisilvial generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT monarimarta generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT morenghiemanuela generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT carlostellacarmelo generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT barnettjohnb generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT blairharryc generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT vezzonipaolo generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT villaanna generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT sobacchicristina generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis
AT ficarafrancesca generationofanimmunodeficientmousemodeloftcirg1deficientautosomalrecessiveosteopetrosis