Cargando…
Single-modal and multi-modal false arrhythmia alarm reduction using attention-based convolutional and recurrent neural networks
This study proposes a deep learning model that effectively suppresses the false alarms in the intensive care units (ICUs) without ignoring the true alarms using single- and multi- modal biosignals. Most of the current work in the literature are either rule-based methods, requiring prior knowledge of...
Autores principales: | Mousavi, Sajad, Fotoohinasab, Atiyeh, Afghah, Fatemeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953791/ https://www.ncbi.nlm.nih.gov/pubmed/31923226 http://dx.doi.org/10.1371/journal.pone.0226990 |
Ejemplares similares
-
A greedy graph search algorithm based on changepoint analysis for automatic QRS complex detection
por: Fotoohinasab, Atiyeh, et al.
Publicado: (2021) -
A contrastive learning approach for ICU false arrhythmia alarm reduction
por: Zhou, Yuerong, et al.
Publicado: (2022) -
False arrhythmia alarms can be reduced by algorithm improvements while the magnitude of the reduction is affected by alarm settings
por: Kaski, M, et al.
Publicado: (2015) -
Axial Attention Convolutional Neural Network for Brain Tumor Segmentation with Multi-Modality MRI Scans
por: Tian, Weiwei, et al.
Publicado: (2022) -
Game Theoretic Approach for Systematic Feature Selection; Application in False Alarm Detection in Intensive Care Units
por: Afghah, Fatemeh, et al.
Publicado: (2018)