Cargando…
D-PAttNet: Dynamic Patch-Attentive Deep Network for Action Unit Detection
Facial action units (AUs) relate to specific local facial regions. Recent efforts in automated AU detection have focused on learning the facial patch representations to detect specific AUs. These efforts have encountered three hurdles. First, they implicitly assume that facial patches are robust to...
Autores principales: | Ertugrul, Itir Onal, Yang, Le, Jeni, László A., Cohn, Jeffrey F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953909/ https://www.ncbi.nlm.nih.gov/pubmed/31930192 http://dx.doi.org/10.3389/fcomp.2019.00011 |
Ejemplares similares
-
Kidney Tumor Segmentation Based on FR2PAttU-Net Model
por: Sun, Peng, et al.
Publicado: (2022) -
Infant AFAR: Automated facial action recognition in infants
por: Onal Ertugrul, Itir, et al.
Publicado: (2022) -
Predicting Vasovagal Reactions to Needles from Facial Action Units
por: Rudokaite, Judita, et al.
Publicado: (2023) -
Genome Sequences of Mycobacteriophages Joselito, Patt, and Tydolla
por: Jacob, Christina, et al.
Publicado: (2020) -
Structure of Patt1 human proapoptotic histone acetyltransferase
por: Jędrzejewski, Roch Paweł, et al.
Publicado: (2013)