Cargando…

Implementing a Cloud Based Method for Protected Clinical Trial Data Sharing

Clinical trials generate a large amount of data that have been underutilized due to obstacles that prevent data sharing including risking patient privacy, data misrepresentation, and invalid secondary analyses. In order to address these obstacles, we developed a novel data sharing method which ensur...

Descripción completa

Detalles Bibliográficos
Autores principales: Luthria, Gaurav, Wang, Qingbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954005/
https://www.ncbi.nlm.nih.gov/pubmed/31797635
Descripción
Sumario:Clinical trials generate a large amount of data that have been underutilized due to obstacles that prevent data sharing including risking patient privacy, data misrepresentation, and invalid secondary analyses. In order to address these obstacles, we developed a novel data sharing method which ensures patient privacy while also protecting the interests of clinical trial investigators. Our flexible and robust approach involves two components: (1) an advanced cloud-based querying language that allows users to test hypotheses without direct access to the real clinical trial data and (2) corresponding synthetic data for the query of interest that allows for exploratory research and model development. Both components can be modified by the clinical trial investigator depending on factors such as the type of trial or number of patients enrolled. To test the effectiveness of our system, we first implement a simple and robust permutation based synthetic data generator. We then use the synthetic data generator coupled with our querying language to identify significant relationships among variables in a realistic clinical trial dataset.