Cargando…

Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel

A Type 316H austenitic stainless steel component containing Cr and impurity element-rich localised regions arising from component fabrication was aged for a prolonged period during service at a temperature of approximately 550 °C. These regions make up approximately 5% of the total volume of the mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Warren, A. D., Griffiths, I. J., Flewitt, P. E. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954037/
https://www.ncbi.nlm.nih.gov/pubmed/31983773
http://dx.doi.org/10.1007/s10853-017-1748-4
Descripción
Sumario:A Type 316H austenitic stainless steel component containing Cr and impurity element-rich localised regions arising from component fabrication was aged for a prolonged period during service at a temperature of approximately 550 °C. These regions make up approximately 5% of the total volume of the microstructure. Previous work has shown that these regions contain ferrite and carbide precipitates and a finer austenite grain size than the adjacent matrix. The present study has used high-resolution transmission electron microscopy combined with compositional microanalysis to show that these regions have a highly complex microstructure containing G phase, chi phase and intragranular γ′ precipitates within the austenite grains. There is phosphorus migration to the chi austenite phase boundary, and the basis for this equilibrium impurity segregation is discussed. A Cr-depleted region was observed surrounding the chi phase precipitates, and the impact of this on the other precipitates is considered. The diversity of precipitates in these Cr-rich regions means that they behave significantly differently to the bulk material under long-term creep conditions leading to preferred nucleation and growth of creep cavities and the formation of localised creep cracks during service.