Cargando…
Simple strategies for semi-supervised feature selection
What is the simplest thing you can do to solve a problem? In the context of semi-supervised feature selection, we tackle exactly this—how much we can gain from two simple classifier-independent strategies. If we have some binary labelled data and some unlabelled, we could assume the unlabelled data...
Autores principales: | Sechidis, Konstantinos, Brown, Gavin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954040/ https://www.ncbi.nlm.nih.gov/pubmed/31983804 http://dx.doi.org/10.1007/s10994-017-5648-2 |
Ejemplares similares
-
Information Theoretic Multi-Target Feature Selection via Output Space Quantization †
por: Sechidis, Konstantinos, et al.
Publicado: (2019) -
Feature selection and semi-supervised clustering using multiobjective optimization
por: Saha, Sriparna, et al.
Publicado: (2014) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals
por: Salimpour, Sahar, et al.
Publicado: (2022) -
Semi-Supervised Feature Transformation for Tissue Image Classification
por: Watanabe, Kenji, et al.
Publicado: (2016)