Cargando…

Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler

The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinem...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xubin, Put, Brecht, Sagara, Akihiko, Gandrud, Knut, Murata, Mitsuhiro, Steele, Julian A., Yabe, Hiroki, Hantschel, Thomas, Roeffaers, Maarten, Tomiyama, Morio, Arase, Hidekazu, Kaneko, Yukihiro, Shimada, Mikinari, Mees, Maarten, Vereecken, Philippe M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954068/
https://www.ncbi.nlm.nih.gov/pubmed/31950074
http://dx.doi.org/10.1126/sciadv.aav3400
_version_ 1783486730589962240
author Chen, Xubin
Put, Brecht
Sagara, Akihiko
Gandrud, Knut
Murata, Mitsuhiro
Steele, Julian A.
Yabe, Hiroki
Hantschel, Thomas
Roeffaers, Maarten
Tomiyama, Morio
Arase, Hidekazu
Kaneko, Yukihiro
Shimada, Mikinari
Mees, Maarten
Vereecken, Philippe M.
author_facet Chen, Xubin
Put, Brecht
Sagara, Akihiko
Gandrud, Knut
Murata, Mitsuhiro
Steele, Julian A.
Yabe, Hiroki
Hantschel, Thomas
Roeffaers, Maarten
Tomiyama, Morio
Arase, Hidekazu
Kaneko, Yukihiro
Shimada, Mikinari
Mees, Maarten
Vereecken, Philippe M.
author_sort Chen, Xubin
collection PubMed
description The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinement of electrolyte solutions inside nanometer-sized pores leads to lower ion conductivity as viscosity increases. Here, we demonstrate that the Li-ion conductivity of nanocomposites consisting of a mesoporous silica monolith with an ionic liquid electrolyte filler can be several times higher than that of the pure ionic liquid electrolyte through the introduction of an interfacial ice layer. Strong adsorption and ordering of the ionic liquid molecules render them immobile and solid-like as for the interfacial ice layer itself. The dipole over the adsorbate mesophase layer results in solvation of the Li(+) ions for enhanced conduction. The demonstrated principle of ion conduction enhancement can be applied to different ion systems.
format Online
Article
Text
id pubmed-6954068
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-69540682020-01-16 Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler Chen, Xubin Put, Brecht Sagara, Akihiko Gandrud, Knut Murata, Mitsuhiro Steele, Julian A. Yabe, Hiroki Hantschel, Thomas Roeffaers, Maarten Tomiyama, Morio Arase, Hidekazu Kaneko, Yukihiro Shimada, Mikinari Mees, Maarten Vereecken, Philippe M. Sci Adv Research Articles The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinement of electrolyte solutions inside nanometer-sized pores leads to lower ion conductivity as viscosity increases. Here, we demonstrate that the Li-ion conductivity of nanocomposites consisting of a mesoporous silica monolith with an ionic liquid electrolyte filler can be several times higher than that of the pure ionic liquid electrolyte through the introduction of an interfacial ice layer. Strong adsorption and ordering of the ionic liquid molecules render them immobile and solid-like as for the interfacial ice layer itself. The dipole over the adsorbate mesophase layer results in solvation of the Li(+) ions for enhanced conduction. The demonstrated principle of ion conduction enhancement can be applied to different ion systems. American Association for the Advancement of Science 2020-01-10 /pmc/articles/PMC6954068/ /pubmed/31950074 http://dx.doi.org/10.1126/sciadv.aav3400 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Chen, Xubin
Put, Brecht
Sagara, Akihiko
Gandrud, Knut
Murata, Mitsuhiro
Steele, Julian A.
Yabe, Hiroki
Hantschel, Thomas
Roeffaers, Maarten
Tomiyama, Morio
Arase, Hidekazu
Kaneko, Yukihiro
Shimada, Mikinari
Mees, Maarten
Vereecken, Philippe M.
Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
title Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
title_full Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
title_fullStr Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
title_full_unstemmed Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
title_short Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
title_sort silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk li-ion conductivity of the ionic liquid electrolyte filler
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954068/
https://www.ncbi.nlm.nih.gov/pubmed/31950074
http://dx.doi.org/10.1126/sciadv.aav3400
work_keys_str_mv AT chenxubin silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT putbrecht silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT sagaraakihiko silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT gandrudknut silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT muratamitsuhiro silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT steelejuliana silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT yabehiroki silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT hantschelthomas silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT roeffaersmaarten silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT tomiyamamorio silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT arasehidekazu silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT kanekoyukihiro silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT shimadamikinari silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT meesmaarten silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller
AT vereeckenphilippem silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller