Cargando…
Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinem...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954068/ https://www.ncbi.nlm.nih.gov/pubmed/31950074 http://dx.doi.org/10.1126/sciadv.aav3400 |
_version_ | 1783486730589962240 |
---|---|
author | Chen, Xubin Put, Brecht Sagara, Akihiko Gandrud, Knut Murata, Mitsuhiro Steele, Julian A. Yabe, Hiroki Hantschel, Thomas Roeffaers, Maarten Tomiyama, Morio Arase, Hidekazu Kaneko, Yukihiro Shimada, Mikinari Mees, Maarten Vereecken, Philippe M. |
author_facet | Chen, Xubin Put, Brecht Sagara, Akihiko Gandrud, Knut Murata, Mitsuhiro Steele, Julian A. Yabe, Hiroki Hantschel, Thomas Roeffaers, Maarten Tomiyama, Morio Arase, Hidekazu Kaneko, Yukihiro Shimada, Mikinari Mees, Maarten Vereecken, Philippe M. |
author_sort | Chen, Xubin |
collection | PubMed |
description | The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinement of electrolyte solutions inside nanometer-sized pores leads to lower ion conductivity as viscosity increases. Here, we demonstrate that the Li-ion conductivity of nanocomposites consisting of a mesoporous silica monolith with an ionic liquid electrolyte filler can be several times higher than that of the pure ionic liquid electrolyte through the introduction of an interfacial ice layer. Strong adsorption and ordering of the ionic liquid molecules render them immobile and solid-like as for the interfacial ice layer itself. The dipole over the adsorbate mesophase layer results in solvation of the Li(+) ions for enhanced conduction. The demonstrated principle of ion conduction enhancement can be applied to different ion systems. |
format | Online Article Text |
id | pubmed-6954068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-69540682020-01-16 Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler Chen, Xubin Put, Brecht Sagara, Akihiko Gandrud, Knut Murata, Mitsuhiro Steele, Julian A. Yabe, Hiroki Hantschel, Thomas Roeffaers, Maarten Tomiyama, Morio Arase, Hidekazu Kaneko, Yukihiro Shimada, Mikinari Mees, Maarten Vereecken, Philippe M. Sci Adv Research Articles The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinement of electrolyte solutions inside nanometer-sized pores leads to lower ion conductivity as viscosity increases. Here, we demonstrate that the Li-ion conductivity of nanocomposites consisting of a mesoporous silica monolith with an ionic liquid electrolyte filler can be several times higher than that of the pure ionic liquid electrolyte through the introduction of an interfacial ice layer. Strong adsorption and ordering of the ionic liquid molecules render them immobile and solid-like as for the interfacial ice layer itself. The dipole over the adsorbate mesophase layer results in solvation of the Li(+) ions for enhanced conduction. The demonstrated principle of ion conduction enhancement can be applied to different ion systems. American Association for the Advancement of Science 2020-01-10 /pmc/articles/PMC6954068/ /pubmed/31950074 http://dx.doi.org/10.1126/sciadv.aav3400 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Chen, Xubin Put, Brecht Sagara, Akihiko Gandrud, Knut Murata, Mitsuhiro Steele, Julian A. Yabe, Hiroki Hantschel, Thomas Roeffaers, Maarten Tomiyama, Morio Arase, Hidekazu Kaneko, Yukihiro Shimada, Mikinari Mees, Maarten Vereecken, Philippe M. Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler |
title | Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler |
title_full | Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler |
title_fullStr | Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler |
title_full_unstemmed | Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler |
title_short | Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler |
title_sort | silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk li-ion conductivity of the ionic liquid electrolyte filler |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954068/ https://www.ncbi.nlm.nih.gov/pubmed/31950074 http://dx.doi.org/10.1126/sciadv.aav3400 |
work_keys_str_mv | AT chenxubin silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT putbrecht silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT sagaraakihiko silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT gandrudknut silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT muratamitsuhiro silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT steelejuliana silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT yabehiroki silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT hantschelthomas silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT roeffaersmaarten silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT tomiyamamorio silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT arasehidekazu silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT kanekoyukihiro silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT shimadamikinari silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT meesmaarten silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller AT vereeckenphilippem silicagelsolidnanocompositeelectrolyteswithinterfacialconductivitypromotionexceedingthebulkliionconductivityoftheionicliquidelectrolytefiller |