Cargando…
The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells
PURPOSE: Epigenetic modification is one of most important mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD). The purpose of this study was to determine whether histone acetyltransferase binding to ORC1 (HBO1) can protect against cigarette smoke (CS)-induced cell...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954103/ https://www.ncbi.nlm.nih.gov/pubmed/32021140 http://dx.doi.org/10.2147/COPD.S234634 |
_version_ | 1783486738299092992 |
---|---|
author | Chen, Lin Luo, Lijuan Kang, Naixin He, Xue Li, Tiao Chen, Yan |
author_facet | Chen, Lin Luo, Lijuan Kang, Naixin He, Xue Li, Tiao Chen, Yan |
author_sort | Chen, Lin |
collection | PubMed |
description | PURPOSE: Epigenetic modification is one of most important mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD). The purpose of this study was to determine whether histone acetyltransferase binding to ORC1 (HBO1) can protect against cigarette smoke (CS)-induced cell apoptosis and sustain normal histone acetylation in COPD. METHODS: Human lung tissue samples were obtained from patients who underwent lung resection. The emphysema mouse model and HBO1 overexpressing mice were each established by intraperitoneal injection with cigarette smoke extract (CSE) or intratracheal lentiviral vectors instillation. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays were used to assess apoptotic ratio in mice. The apoptosis of human bronchial epithelial cells (HBECs) was assayed by flow cytometry. HBO1, B-cell lymphoma-2 (BCL-2), and H3K14ac protein expression were detected by Western blotting. HBO1 mRNA expression was measured by quantitative real-time polymerase chain reaction. RESULTS: Protein expression of HBO1 was decreased significantly in lung tissue from COPD patients and CSE-treated emphysema mouse models. Overexpression of HBO1 attenuated CSE-induced emphysematous changes, as well as apoptosis in the lungs of COPD mice. In vitro, the HBO1 protein degraded in a time- and dose-dependent course with CSE treatment. With flow cytometry, we proved that HBO1 could reverse the apoptosis of HBECs induced by CSE. Furthermore, HBO1 overexpression promoted the expression of anti-apoptotic BCL-2 protein and enhanced H3K14 acetylation in airway epithelial cells. CONCLUSION: These findings demonstrate that the key histone modulator HBO1 plays a protective role in COPD pathogenesis that may shed light on potential therapeutic targets to inhibit the progress of COPD. |
format | Online Article Text |
id | pubmed-6954103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-69541032020-02-04 The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells Chen, Lin Luo, Lijuan Kang, Naixin He, Xue Li, Tiao Chen, Yan Int J Chron Obstruct Pulmon Dis Original Research PURPOSE: Epigenetic modification is one of most important mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD). The purpose of this study was to determine whether histone acetyltransferase binding to ORC1 (HBO1) can protect against cigarette smoke (CS)-induced cell apoptosis and sustain normal histone acetylation in COPD. METHODS: Human lung tissue samples were obtained from patients who underwent lung resection. The emphysema mouse model and HBO1 overexpressing mice were each established by intraperitoneal injection with cigarette smoke extract (CSE) or intratracheal lentiviral vectors instillation. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays were used to assess apoptotic ratio in mice. The apoptosis of human bronchial epithelial cells (HBECs) was assayed by flow cytometry. HBO1, B-cell lymphoma-2 (BCL-2), and H3K14ac protein expression were detected by Western blotting. HBO1 mRNA expression was measured by quantitative real-time polymerase chain reaction. RESULTS: Protein expression of HBO1 was decreased significantly in lung tissue from COPD patients and CSE-treated emphysema mouse models. Overexpression of HBO1 attenuated CSE-induced emphysematous changes, as well as apoptosis in the lungs of COPD mice. In vitro, the HBO1 protein degraded in a time- and dose-dependent course with CSE treatment. With flow cytometry, we proved that HBO1 could reverse the apoptosis of HBECs induced by CSE. Furthermore, HBO1 overexpression promoted the expression of anti-apoptotic BCL-2 protein and enhanced H3K14 acetylation in airway epithelial cells. CONCLUSION: These findings demonstrate that the key histone modulator HBO1 plays a protective role in COPD pathogenesis that may shed light on potential therapeutic targets to inhibit the progress of COPD. Dove 2020-01-06 /pmc/articles/PMC6954103/ /pubmed/32021140 http://dx.doi.org/10.2147/COPD.S234634 Text en © 2020 Chen et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Chen, Lin Luo, Lijuan Kang, Naixin He, Xue Li, Tiao Chen, Yan The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells |
title | The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells |
title_full | The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells |
title_fullStr | The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells |
title_full_unstemmed | The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells |
title_short | The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells |
title_sort | protective effect of hbo1 on cigarette smoke extract-induced apoptosis in airway epithelial cells |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954103/ https://www.ncbi.nlm.nih.gov/pubmed/32021140 http://dx.doi.org/10.2147/COPD.S234634 |
work_keys_str_mv | AT chenlin theprotectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT luolijuan theprotectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT kangnaixin theprotectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT hexue theprotectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT litiao theprotectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT chenyan theprotectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT chenlin protectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT luolijuan protectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT kangnaixin protectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT hexue protectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT litiao protectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells AT chenyan protectiveeffectofhbo1oncigarettesmokeextractinducedapoptosisinairwayepithelialcells |