Cargando…
Comparison of different input modalities and network structures for deep learning-based seizure detection
The manual review of an electroencephalogram (EEG) for seizure detection is a laborious and error-prone process. Thus, automated seizure detection based on machine learning has been studied for decades. Recently, deep learning has been adopted in order to avoid manual feature extraction and selectio...
Autores principales: | Cho, Kyung-Ok, Jang, Hyun-Jong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954227/ https://www.ncbi.nlm.nih.gov/pubmed/31924842 http://dx.doi.org/10.1038/s41598-019-56958-y |
Ejemplares similares
-
Dual deep neural network-based classifiers to detect experimental seizures
por: Jang, Hyun-Jong, et al.
Publicado: (2019) -
Epileptic Seizure Detection with Hybrid Time-Frequency EEG Input: A Deep Learning Approach
por: Pan, Yayan, et al.
Publicado: (2022) -
Feasibility of fully automated classification of whole slide images based on deep learning
por: Cho, Kyung-Ok, et al.
Publicado: (2020) -
Multi-Modal Song Mood Detection with Deep Learning †
por: Pyrovolakis, Konstantinos, et al.
Publicado: (2022) -
Applying deep learning-based multi-modal for detection of coronavirus
por: Rani, Geeta, et al.
Publicado: (2021)