Cargando…

25-vitamin D reduces inflammation in uremic environment

Chronic kidney disease (CKD) is characterized by loss of renal function and a consequent increase of serum uremic toxins, which contribute to inflammation status. Deficiency of 25-vitamin D, often found in patients with CKD, has been included as an inflammatory factor since it might modulate the imm...

Descripción completa

Detalles Bibliográficos
Autores principales: Brito, Rodrigo Barbosa de Oliveira, Rebello, Jacqueline Ferritto, Grabulosa, Caren Cristina, Pinto, Walter, Morales, Armando, Elias, Rosilene Motta, Moyses, Rosa Maria Affonso, Dalboni, Maria Aparecida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954254/
https://www.ncbi.nlm.nih.gov/pubmed/31924826
http://dx.doi.org/10.1038/s41598-019-56874-1
Descripción
Sumario:Chronic kidney disease (CKD) is characterized by loss of renal function and a consequent increase of serum uremic toxins, which contribute to inflammation status. Deficiency of 25-vitamin D, often found in patients with CKD, has been included as an inflammatory factor since it might modulate the immune system. The aim of this study was to investigate the role of 25-vitamin D on inflammatory pathways in healthy and uremic environment. Toll-like receptor 4 (TLR4), oxidative stress (ROS), vitamin D receptor (VDR), 1-α hydroxylase (CYP27), 24 hydroxylase, cathelicidin, and MCP-1 were evaluated in monocytes exposed to a uremic serum pool compared with healthy pool. The human monocytes lineage (U937) was incubated with or without 25-vitamin D (50 ng/ml for 24 hours). TRL4, VDR, CYP27, CYP24, and ROS were evaluated by flow cytometry. We used ELISA to measure IL-6, TNF-α, IL-10, cathelicidin, and MCP-1 in the cell culture supernatant. We observed a higher expression of TRL-4, IL-6, TNF-α, IL-10, cathelicidin and MCP-1 in monocytes incubated with uremic serum when compared with serum from healthy individuals. Supplementation of 25-vitamin D was able to reduce the expression of TRL4, cathelicidin, and MCP-1 in the uremic environment. There was no difference in the expression of VDR, CYP27 and CYP24 intracellular enzymes. This in vitro study showed that the uremic pool activates inflammatory response in monocytes, which was reversed by 25-vitamin D supplementation; this finding suggests that 25-vitamin D has an anti-inflammatory role in the uremic environment.