Cargando…

Selection from a pool of self-assembling lipid replicators

Replication and compartmentalization are fundamental to living systems and may have played important roles in life’s origins. Selection in compartmentalized autocatalytic systems might provide a way for evolution to occur and for life to arise from non-living systems. Herein we report selection in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Colomer, Ignacio, Borissov, Arseni, Fletcher, Stephen P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954257/
https://www.ncbi.nlm.nih.gov/pubmed/31924788
http://dx.doi.org/10.1038/s41467-019-13903-x
Descripción
Sumario:Replication and compartmentalization are fundamental to living systems and may have played important roles in life’s origins. Selection in compartmentalized autocatalytic systems might provide a way for evolution to occur and for life to arise from non-living systems. Herein we report selection in a system of self-reproducing lipids where a predominant species can emerge from a pool of competitors. The lipid replicators are metastable and their out-of-equilibrium population can be sustained by feeding the system with starting materials. Phase separation is crucial for selective surfactant formation as well as autocatalytic kinetics; indeed, no selection is observed when all reacting species are dissolved in the same phase. Selectivity is attributed to a kinetically controlled process where the rate of monomer formation determines which replicator building blocks are the fittest. This work reveals how kinetics of a phase-separated autocatalytic reaction may be used to control the population of out-of-equilibrium replicators in time.