Cargando…
Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices
Quantum memories are a fundamental of any global-scale quantum Internet, high-performance quantum networking and near-term quantum computers. A main problem of quantum memories is the low retrieval efficiency of the quantum systems from the quantum registers of the quantum memory. Here, we define a...
Autores principales: | Gyongyosi, Laszlo, Imre, Sandor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954268/ https://www.ncbi.nlm.nih.gov/pubmed/31924814 http://dx.doi.org/10.1038/s41598-019-56689-0 |
Ejemplares similares
-
Multilayer Optimization for the Quantum Internet
por: Gyongyosi, Laszlo, et al.
Publicado: (2018) -
Training Optimization for Gate-Model Quantum Neural Networks
por: Gyongyosi, Laszlo, et al.
Publicado: (2019) -
Dense Quantum Measurement Theory
por: Gyongyosi, Laszlo, et al.
Publicado: (2019) -
Resource prioritization and balancing for the quantum internet
por: Gyongyosi, Laszlo, et al.
Publicado: (2020) -
Advanced quantum communications: an engineering approach
por: Imre, Sandor, et al.
Publicado: (2012)