Cargando…
Deciphering eukaryotic gene-regulatory logic with 100 million random promoters
How transcription factors (TFs) interpret cis-regulatory DNA sequence to control gene expression remains unclear, largely because past studies using native and engineered sequences had insufficient scale. Here, we measure the expression output of >100 million synthetic yeast promoter sequences th...
Autores principales: | de Boer, Carl G., Vaishnav, Eeshit Dhaval, Sadeh, Ronen, Abeyta, Esteban Luis, Friedman, Nir, Regev, Aviv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954276/ https://www.ncbi.nlm.nih.gov/pubmed/31792407 http://dx.doi.org/10.1038/s41587-019-0315-8 |
Ejemplares similares
-
BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization
por: de Boer, Carl G., et al.
Publicado: (2018) -
Deciphering RNA splicing logic with interpretable machine learning
por: Liao, Susan E., et al.
Publicado: (2023) -
POSTAR2: deciphering the post-transcriptional regulatory logics
por: Zhu, Yumin, et al.
Publicado: (2019) -
A functional selection model explains evolutionary robustness despite plasticity in regulatory networks
por: Habib, Naomi, et al.
Publicado: (2012) -
Actomyosin meshwork mechanosensing enables tissue shape to orient cell force
por: Chanet, Soline, et al.
Publicado: (2017)