Cargando…
Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches
Motivation: Metabolomics involves studies of a great number of metabolites, which are small molecules present in biological systems. They play a lot of important functions such as energy transport, signaling, building block of cells and inhibition/catalysis. Understanding biochemical characteristics...
Autores principales: | Nguyen, Dai Hai, Nguyen, Canh Hao, Mamitsuka, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954430/ https://www.ncbi.nlm.nih.gov/pubmed/30099485 http://dx.doi.org/10.1093/bib/bby066 |
Ejemplares similares
-
ADAPTIVE: leArning DAta-dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra
por: Nguyen, Dai Hai, et al.
Publicado: (2019) -
SIMPLE: Sparse Interaction Model over Peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra
por: Nguyen, Dai Hai, et al.
Publicado: (2018) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
Machine learning approaches for drug combination therapies
por: Güvenç Paltun, Betül, et al.
Publicado: (2021) -
Crop loss identification at field parcel scale using satellite remote sensing and machine learning
por: Hiremath, Santosh, et al.
Publicado: (2021)