Cargando…
Assessing and reducing PET radiotracer infiltration rates: a single center experience in injection quality monitoring methods and quality improvement
BACKGROUND: Successful injection of radiolabeled compounds is critical for positron emission tomography (PET) imaging. A poor quality injection limits the tracer availability in the body and can impact diagnostic results. In this study, we attempt to quantify our infiltration rates, develop an actio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954558/ https://www.ncbi.nlm.nih.gov/pubmed/31924179 http://dx.doi.org/10.1186/s12880-020-0408-3 |
Sumario: | BACKGROUND: Successful injection of radiolabeled compounds is critical for positron emission tomography (PET) imaging. A poor quality injection limits the tracer availability in the body and can impact diagnostic results. In this study, we attempt to quantify our infiltration rates, develop an actionable quality improvement plan to reduce potentially compromised injections, and compare injection scoring to PET/CT imaging results. METHODS: A commercially available system that uses external radiation detectors was used to monitor and score injection quality. This system compares the time activity curves of the bolus relative to a control reading in order to provide a score related to the quality of the injection. These injection scores were used to assess infiltration rates at our facility in order to develop and implement a quality improvement plan for our PET imaging center. Injection scores and PET imaging results were reviewed to determine correlations between image-based assessments of infiltration, such as liver SUVs, and injection scoring, as well as to gather infiltration reporting statistics by physicians. RESULTS: A total of 1033 injections were monitored at our center. The phase 1 infiltration rate was 2.1%. In decision tree analysis, patients < 132.5lbs were associated with infiltrations. Additional analyses suggested patients > 127.5 lbs. with non-antecubital injections were associated with lower quality injections. Our phase 2 infiltration rate was 1.9%. Comparison of injection score to SUV showed no significant correlation and indicated that only 63% of suspected infiltrations were visible on PET/CT imaging. CONCLUSIONS: Developing a quality improvement plan and monitoring PET injections can lead to reduced infiltration rates. No significant correlation between reference SUVs and injection score provides evidence that determination of infiltration based on PET images alone may be limited. Results also indicate that the number of infiltrated PET injections is under-reported. |
---|