Cargando…

Expanding our view of Bartonella and its hosts: Bartonella in nest ectoparasites and their migratory avian hosts

BACKGROUND: Bartonella is a genus of Gram-negative facultative intracellular Alphaproteobacteria of public health importance. Although they are known to mainly infect mammalian hosts with some blood-feeding arthropods having been confirmed as vectors, there is some evidence of Bartonella association...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Heather M., Dittmar, Katharina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954622/
https://www.ncbi.nlm.nih.gov/pubmed/31924262
http://dx.doi.org/10.1186/s13071-020-3896-7
Descripción
Sumario:BACKGROUND: Bartonella is a genus of Gram-negative facultative intracellular Alphaproteobacteria of public health importance. Although they are known to mainly infect mammalian hosts with some blood-feeding arthropods having been confirmed as vectors, there is some evidence of Bartonella association with non-mammalian hosts including birds. METHODS: Here we used high-throughput sequencing of 16S rRNA and Sanger sequencing of the citrate synthase (gltA) genes to test for the presence of Bartonellaceae in the blood of three migratory cavity nesting bird species, purple martins (Progne subis), tree swallows (Tachycineta bicolor) and eastern bluebirds (Sialia sialis) and their most prevalent and abundant nest ectoparasites, Dermanyssus prognephilus (mite), Ceratophyllus idius (flea) and Protocalliphora sialia (bird blow fly larva). We constructed maximum likelihood phylogenetic trees to verify the placement of the resulting sequences in the Bartonellaceae. RESULTS: We found evidence of Bartonella in all three bird species and all three arthropod species tested. We report multiple instances of identical Bartonella sequences in both birds and parasites, leading to the likely hypothesis that these ectoparasites are potential vectors of Bartonella. Our phylogenetic analysis suggests that ‘avian Bartonella’ may form its own sub-clade within the genus Bartonella. CONCLUSIONS: To the best of our knowledge, we provide the first confirmation of overlapping Bartonella strains among bird hosts and various species of nest-associated ectoparasites from the same system, suggesting a possible Bartonella host–vector relationship between these arthropods and a non-mammalian host. Our study adds to the growing appreciation of the Bartonellaceae as a phylogenetically diverse group with a wide range of hosts. [Image: see text]