Cargando…
Gene set enrichment for reproducible science: comparison of CERNO and eight other algorithms
MOTIVATION: Analysis of gene set (GS) enrichment is an essential part of functional omics studies. Here, we complement the established evaluation metrics of GS enrichment algorithms with a novel approach to assess the practical reproducibility of scientific results obtained from GS enrichment tests...
Autores principales: | Zyla, Joanna, Marczyk, Michal, Domaszewska, Teresa, Kaufmann, Stefan H E, Polanska, Joanna, Weiner, January |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954644/ https://www.ncbi.nlm.nih.gov/pubmed/31165139 http://dx.doi.org/10.1093/bioinformatics/btz447 |
Ejemplares similares
-
Ranking metrics in gene set enrichment analysis: do they matter?
por: Zyla, Joanna, et al.
Publicado: (2017) -
Gene Set Enrichment Analysis Reveals Individual Variability in Host Responses in Tuberculosis Patients
por: Domaszewska, Teresa, et al.
Publicado: (2021) -
Importance of SNP Dependency Correction and Association Integration for Gene Set Analysis in Genome-Wide Association Studies
por: Marczyk, Michal, et al.
Publicado: (2021) -
BatchI: Batch effect Identification in high-throughput screening data using a dynamic programming algorithm
por: Papiez, Anna, et al.
Publicado: (2019) -
Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry
por: Polanski, Andrzej, et al.
Publicado: (2015)