Cargando…
Removal of EMG Artifacts from Multichannel EEG Signals Using Combined Singular Spectrum Analysis and Canonical Correlation Analysis
Electroencephalography (EEG) signals collected from human scalps are often polluted by diverse artifacts, for instance electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) artifacts. Muscle artifacts are particularly difficult to eliminate among all kinds of artifacts due to the...
Autores principales: | Liu, Qingze, Liu, Aiping, Zhang, Xu, Chen, Xiang, Qian, Ruobing, Chen, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955116/ https://www.ncbi.nlm.nih.gov/pubmed/31976053 http://dx.doi.org/10.1155/2019/4159676 |
Ejemplares similares
-
Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals
por: Yedukondalu, Jammisetty, et al.
Publicado: (2023) -
Electromyogram (EMG) Removal by Adding Sources of EMG (ERASE)—A Novel ICA-Based Algorithm for Removing Myoelectric Artifacts From EEG
por: Li, Yongcheng, et al.
Publicado: (2021) -
Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal
por: Roy, Vandana, et al.
Publicado: (2017) -
An Unsupervised Multichannel Artifact Detection Method for Sleep EEG Based on Riemannian Geometry
por: Saifutdinova, Elizaveta, et al.
Publicado: (2019) -
Optimal Multichannel Artifact Prediction and Removal for Neural Stimulation and Brain Machine Interfaces
por: Sadeghi Najafabadi, Mina, et al.
Publicado: (2020)