Cargando…

A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly

Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro...

Descripción completa

Detalles Bibliográficos
Autores principales: Herrmann, Jonathan, Li, Po-Nan, Jabbarpour, Fatemeh, Chan, Anson C. K., Rajkovic, Ivan, Matsui, Tsutomu, Shapiro, Lucy, Smit, John, Weiss, Thomas M., Murphy, Michael E. P., Wakatsuki, Soichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955313/
https://www.ncbi.nlm.nih.gov/pubmed/31848245
http://dx.doi.org/10.1073/pnas.1909798116
_version_ 1783486920415772672
author Herrmann, Jonathan
Li, Po-Nan
Jabbarpour, Fatemeh
Chan, Anson C. K.
Rajkovic, Ivan
Matsui, Tsutomu
Shapiro, Lucy
Smit, John
Weiss, Thomas M.
Murphy, Michael E. P.
Wakatsuki, Soichi
author_facet Herrmann, Jonathan
Li, Po-Nan
Jabbarpour, Fatemeh
Chan, Anson C. K.
Rajkovic, Ivan
Matsui, Tsutomu
Shapiro, Lucy
Smit, John
Weiss, Thomas M.
Murphy, Michael E. P.
Wakatsuki, Soichi
author_sort Herrmann, Jonathan
collection PubMed
description Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro are largely unknown. Here, we demonstrate that the Caulobacter crescentus SLP readily crystallizes into sheets in vitro via a calcium-triggered multistep assembly pathway. This pathway involves 2 domains serving distinct functions in assembly. The C-terminal crystallization domain forms the physiological 2-dimensional (2D) crystal lattice, but full-length protein crystallizes multiple orders of magnitude faster due to the N-terminal nucleation domain. Observing crystallization using a time course of electron cryo-microscopy (Cryo-EM) imaging reveals a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Dynamic flexibility between the 2 domains rationalizes efficient S-layer crystal nucleation on the curved cellular surface. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials.
format Online
Article
Text
id pubmed-6955313
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-69553132020-01-14 A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly Herrmann, Jonathan Li, Po-Nan Jabbarpour, Fatemeh Chan, Anson C. K. Rajkovic, Ivan Matsui, Tsutomu Shapiro, Lucy Smit, John Weiss, Thomas M. Murphy, Michael E. P. Wakatsuki, Soichi Proc Natl Acad Sci U S A Biological Sciences Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro are largely unknown. Here, we demonstrate that the Caulobacter crescentus SLP readily crystallizes into sheets in vitro via a calcium-triggered multistep assembly pathway. This pathway involves 2 domains serving distinct functions in assembly. The C-terminal crystallization domain forms the physiological 2-dimensional (2D) crystal lattice, but full-length protein crystallizes multiple orders of magnitude faster due to the N-terminal nucleation domain. Observing crystallization using a time course of electron cryo-microscopy (Cryo-EM) imaging reveals a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Dynamic flexibility between the 2 domains rationalizes efficient S-layer crystal nucleation on the curved cellular surface. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. National Academy of Sciences 2020-01-07 2019-12-17 /pmc/articles/PMC6955313/ /pubmed/31848245 http://dx.doi.org/10.1073/pnas.1909798116 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Herrmann, Jonathan
Li, Po-Nan
Jabbarpour, Fatemeh
Chan, Anson C. K.
Rajkovic, Ivan
Matsui, Tsutomu
Shapiro, Lucy
Smit, John
Weiss, Thomas M.
Murphy, Michael E. P.
Wakatsuki, Soichi
A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
title A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
title_full A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
title_fullStr A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
title_full_unstemmed A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
title_short A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
title_sort bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955313/
https://www.ncbi.nlm.nih.gov/pubmed/31848245
http://dx.doi.org/10.1073/pnas.1909798116
work_keys_str_mv AT herrmannjonathan abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT liponan abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT jabbarpourfatemeh abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT chanansonck abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT rajkovicivan abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT matsuitsutomu abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT shapirolucy abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT smitjohn abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT weissthomasm abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT murphymichaelep abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT wakatsukisoichi abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT herrmannjonathan bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT liponan bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT jabbarpourfatemeh bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT chanansonck bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT rajkovicivan bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT matsuitsutomu bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT shapirolucy bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT smitjohn bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT weissthomasm bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT murphymichaelep bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly
AT wakatsukisoichi bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly