Cargando…
A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly
Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955313/ https://www.ncbi.nlm.nih.gov/pubmed/31848245 http://dx.doi.org/10.1073/pnas.1909798116 |
_version_ | 1783486920415772672 |
---|---|
author | Herrmann, Jonathan Li, Po-Nan Jabbarpour, Fatemeh Chan, Anson C. K. Rajkovic, Ivan Matsui, Tsutomu Shapiro, Lucy Smit, John Weiss, Thomas M. Murphy, Michael E. P. Wakatsuki, Soichi |
author_facet | Herrmann, Jonathan Li, Po-Nan Jabbarpour, Fatemeh Chan, Anson C. K. Rajkovic, Ivan Matsui, Tsutomu Shapiro, Lucy Smit, John Weiss, Thomas M. Murphy, Michael E. P. Wakatsuki, Soichi |
author_sort | Herrmann, Jonathan |
collection | PubMed |
description | Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro are largely unknown. Here, we demonstrate that the Caulobacter crescentus SLP readily crystallizes into sheets in vitro via a calcium-triggered multistep assembly pathway. This pathway involves 2 domains serving distinct functions in assembly. The C-terminal crystallization domain forms the physiological 2-dimensional (2D) crystal lattice, but full-length protein crystallizes multiple orders of magnitude faster due to the N-terminal nucleation domain. Observing crystallization using a time course of electron cryo-microscopy (Cryo-EM) imaging reveals a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Dynamic flexibility between the 2 domains rationalizes efficient S-layer crystal nucleation on the curved cellular surface. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. |
format | Online Article Text |
id | pubmed-6955313 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-69553132020-01-14 A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly Herrmann, Jonathan Li, Po-Nan Jabbarpour, Fatemeh Chan, Anson C. K. Rajkovic, Ivan Matsui, Tsutomu Shapiro, Lucy Smit, John Weiss, Thomas M. Murphy, Michael E. P. Wakatsuki, Soichi Proc Natl Acad Sci U S A Biological Sciences Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro are largely unknown. Here, we demonstrate that the Caulobacter crescentus SLP readily crystallizes into sheets in vitro via a calcium-triggered multistep assembly pathway. This pathway involves 2 domains serving distinct functions in assembly. The C-terminal crystallization domain forms the physiological 2-dimensional (2D) crystal lattice, but full-length protein crystallizes multiple orders of magnitude faster due to the N-terminal nucleation domain. Observing crystallization using a time course of electron cryo-microscopy (Cryo-EM) imaging reveals a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Dynamic flexibility between the 2 domains rationalizes efficient S-layer crystal nucleation on the curved cellular surface. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. National Academy of Sciences 2020-01-07 2019-12-17 /pmc/articles/PMC6955313/ /pubmed/31848245 http://dx.doi.org/10.1073/pnas.1909798116 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Herrmann, Jonathan Li, Po-Nan Jabbarpour, Fatemeh Chan, Anson C. K. Rajkovic, Ivan Matsui, Tsutomu Shapiro, Lucy Smit, John Weiss, Thomas M. Murphy, Michael E. P. Wakatsuki, Soichi A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly |
title | A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly |
title_full | A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly |
title_fullStr | A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly |
title_full_unstemmed | A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly |
title_short | A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly |
title_sort | bacterial surface layer protein exploits multistep crystallization for rapid self-assembly |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955313/ https://www.ncbi.nlm.nih.gov/pubmed/31848245 http://dx.doi.org/10.1073/pnas.1909798116 |
work_keys_str_mv | AT herrmannjonathan abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT liponan abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT jabbarpourfatemeh abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT chanansonck abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT rajkovicivan abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT matsuitsutomu abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT shapirolucy abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT smitjohn abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT weissthomasm abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT murphymichaelep abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT wakatsukisoichi abacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT herrmannjonathan bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT liponan bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT jabbarpourfatemeh bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT chanansonck bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT rajkovicivan bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT matsuitsutomu bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT shapirolucy bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT smitjohn bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT weissthomasm bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT murphymichaelep bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly AT wakatsukisoichi bacterialsurfacelayerproteinexploitsmultistepcrystallizationforrapidselfassembly |