Cargando…
Using machine learning to predict extreme events in complex systems
Extreme events and the related anomalous statistics are ubiquitously observed in many natural systems, and the development of efficient methods to understand and accurately predict such representative features remains a grand challenge. Here, we investigate the skill of deep learning strategies in t...
Autores principales: | Qi, Di, Majda, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955342/ https://www.ncbi.nlm.nih.gov/pubmed/31871152 http://dx.doi.org/10.1073/pnas.1917285117 |
Ejemplares similares
-
Statistical dynamical model to predict extreme events and anomalous features in shallow water waves with abrupt depth change
por: Majda, Andrew J., et al.
Publicado: (2019) -
Machine Learning Predictors of Extreme Events Occurring in Complex Dynamical Systems
por: Guth, Stephen, et al.
Publicado: (2019) -
Beating the curse of dimension with accurate statistics for the Fokker–Planck equation in complex turbulent systems
por: Chen, Nan, et al.
Publicado: (2017) -
Machine learning potentials for complex aqueous systems made simple
por: Schran, Christoph, et al.
Publicado: (2021) -
Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems
por: Mohamad, Mustafa A., et al.
Publicado: (2018)