Cargando…

Volatile organic compound breath signatures of children with cystic fibrosis by real-time SESI-HRMS

Early pulmonary infection and inflammation result in irreversible lung damage and are major contributors to cystic fibrosis (CF)-related morbidity. An easy to apply and noninvasive assessment for the timely detection of disease-associated complications would be of high value. We aimed to detect vola...

Descripción completa

Detalles Bibliográficos
Autores principales: Weber, Ronja, Haas, Naemi, Baghdasaryan, Astghik, Bruderer, Tobias, Inci, Demet, Micic, Srdjan, Perkins, Nathan, Spinas, Renate, Zenobi, Renato, Moeller, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Respiratory Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955441/
https://www.ncbi.nlm.nih.gov/pubmed/31956658
http://dx.doi.org/10.1183/23120541.00171-2019
Descripción
Sumario:Early pulmonary infection and inflammation result in irreversible lung damage and are major contributors to cystic fibrosis (CF)-related morbidity. An easy to apply and noninvasive assessment for the timely detection of disease-associated complications would be of high value. We aimed to detect volatile organic compound (VOC) breath signatures of children with CF by real-time secondary electrospray ionisation high-resolution mass spectrometry (SESI-HRMS). A total of 101 children, aged 4–18 years (CF=52; healthy controls=49) and comparable for sex, body mass index and lung function were included in this prospective cross-sectional study. Exhaled air was analysed by a SESI-source linked to a high-resolution time-of-flight mass spectrometer. Mass spectra ranging from m/z 50 to 500 were recorded. Out of 3468 m/z features, 171 were significantly different in children with CF (false discovery rate adjusted p-value of 0.05). The predictive ability (CF versus healthy) was assessed by using a support-vector machine classifier and showed an average accuracy (repeated cross-validation) of 72.1% (sensitivity of 77.2% and specificity of 67.7%). This is the first study to assess entire breath profiles of children with SESI-HRMS and to extract sets of VOCs that are associated with CF. We have detected a large set of exhaled molecules that are potentially related to CF, indicating that the molecular breath of children with CF is diverse and informative.