Cargando…

Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?

BACKGROUND: Mammalian oocytes initiate meiosis in fetal ovary and are arrested at dictyate stage in prophase I for a long period. It is known that incidence of chromosome segregation errors in oocytes increases with advancing age, but the molecular mechanism underlying this phenomenon has not been c...

Descripción completa

Detalles Bibliográficos
Autor principal: Lee, Jibak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955592/
https://www.ncbi.nlm.nih.gov/pubmed/31956283
http://dx.doi.org/10.1002/rmb2.12299
_version_ 1783486964418215936
author Lee, Jibak
author_facet Lee, Jibak
author_sort Lee, Jibak
collection PubMed
description BACKGROUND: Mammalian oocytes initiate meiosis in fetal ovary and are arrested at dictyate stage in prophase I for a long period. It is known that incidence of chromosome segregation errors in oocytes increases with advancing age, but the molecular mechanism underlying this phenomenon has not been clarified. METHODS: Cohesin, a multi‐subunit protein complex, mediates sister chromatid cohesion in both mitosis and meiosis. In this review, molecular basis of meiotic chromosome cohesion and segregation is summarized. Further, the relationship between chromosome segregation errors and cohesin deterioration in aged oocytes is discussed. RESULTS: Recent studies show that chromosome‐associated cohesin decreases in an age‐dependent manner in mouse oocytes. Furthermore, conditional knockout or activation of cohesin in oocytes indicates that only the cohesin expressed before premeiotic S phase can establish and maintain sister chromatic cohesion and that cohesin does not turnover during the dictyate arrest. CONCLUSION: In mice, the accumulating evidence suggests that deterioration of cohesin due to the lack of turnover during dictyate arrest is one of the major causes of chromosome segregation errors in aged oocytes. However, whether the same is true in human remains elusive since even the deterioration of cohesin during dictyate arrest has not been demonstrated in human oocytes.
format Online
Article
Text
id pubmed-6955592
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-69555922020-01-17 Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration? Lee, Jibak Reprod Med Biol Mini Reviews BACKGROUND: Mammalian oocytes initiate meiosis in fetal ovary and are arrested at dictyate stage in prophase I for a long period. It is known that incidence of chromosome segregation errors in oocytes increases with advancing age, but the molecular mechanism underlying this phenomenon has not been clarified. METHODS: Cohesin, a multi‐subunit protein complex, mediates sister chromatid cohesion in both mitosis and meiosis. In this review, molecular basis of meiotic chromosome cohesion and segregation is summarized. Further, the relationship between chromosome segregation errors and cohesin deterioration in aged oocytes is discussed. RESULTS: Recent studies show that chromosome‐associated cohesin decreases in an age‐dependent manner in mouse oocytes. Furthermore, conditional knockout or activation of cohesin in oocytes indicates that only the cohesin expressed before premeiotic S phase can establish and maintain sister chromatic cohesion and that cohesin does not turnover during the dictyate arrest. CONCLUSION: In mice, the accumulating evidence suggests that deterioration of cohesin due to the lack of turnover during dictyate arrest is one of the major causes of chromosome segregation errors in aged oocytes. However, whether the same is true in human remains elusive since even the deterioration of cohesin during dictyate arrest has not been demonstrated in human oocytes. John Wiley and Sons Inc. 2019-09-12 /pmc/articles/PMC6955592/ /pubmed/31956283 http://dx.doi.org/10.1002/rmb2.12299 Text en © 2019 The Authors. Reproductive Medicine and Biology published by John Wiley & Sons Australia, Ltd on behalf of Japan Society for Reproductive Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Mini Reviews
Lee, Jibak
Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?
title Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?
title_full Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?
title_fullStr Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?
title_full_unstemmed Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?
title_short Is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?
title_sort is age‐related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?
topic Mini Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955592/
https://www.ncbi.nlm.nih.gov/pubmed/31956283
http://dx.doi.org/10.1002/rmb2.12299
work_keys_str_mv AT leejibak isagerelatedincreaseofchromosomesegregationerrorsinmammalianoocytescausedbycohesindeterioration