Cargando…

Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by Neonicotinoids

Acetylcholine (ACh) is the major excitatory neurotransmitter in the insect central nervous system (CNS). However, besides the neuronal expression of ACh receptors (AChR), the existence of non-neuronal AChR in honeybees is plausible. The cholinergic system is a popular target of insecticides because...

Descripción completa

Detalles Bibliográficos
Autores principales: Grünewald, Bernd, Siefert, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955729/
https://www.ncbi.nlm.nih.gov/pubmed/31771114
http://dx.doi.org/10.3390/insects10120420
Descripción
Sumario:Acetylcholine (ACh) is the major excitatory neurotransmitter in the insect central nervous system (CNS). However, besides the neuronal expression of ACh receptors (AChR), the existence of non-neuronal AChR in honeybees is plausible. The cholinergic system is a popular target of insecticides because the pharmacology of insect nicotinic acetylcholine receptors (nAChRs) differs substantially from their vertebrate counterparts. Neonicotinoids are agonists of the nAChR and are largely used in crop protection. In contrast to their relatively high safety for humans and livestock, neonicotinoids pose a threat to pollinating insects such as bees. In addition to its effects on behavior, it becomes increasingly evident that neonicotinoids affect developmental processes in bees that appear to be independent of neuronal AChRs. Brood food (royal jelly, worker jelly, or drone jelly) produced in the hypopharyngeal glands of nurse bees contains millimolar concentrations of ACh, which is required for proper larval development. Neonicotinoids reduce the secreted ACh-content in brood food, reduce hypopharyngeal gland size, and lead to developmental impairments within the colony. We assume that potential hazards of neonicotinoids on pollinating bees occur neuronally causing behavioral impairments on adult individuals, and non-neuronally causing developmental disturbances as well as destroying gland functioning.