Cargando…

Ionic Liquid-Modulated Synthesis of Porous Worm-Like Gold with Strong SERS Response and Superior Catalytic Activities

Porous gold with well-defined shape and size have aroused extensive research enthusiasm due to their prominent properties in various applications. However, it is still a great challenge to explore a simple, green, and low-cost route to fabricate porous gold with a “clean” surface. In this work, poro...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Kaisheng, Wang, Nan, Li, Zhiyong, Lu, Weiwei, Wang, Jianji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955750/
https://www.ncbi.nlm.nih.gov/pubmed/31842430
http://dx.doi.org/10.3390/nano9121772
Descripción
Sumario:Porous gold with well-defined shape and size have aroused extensive research enthusiasm due to their prominent properties in various applications. However, it is still a great challenge to explore a simple, green, and low-cost route to fabricate porous gold with a “clean” surface. In this work, porous worm-like Au has been easily synthesized in a one-step procedure from aqueous solution at room temperature under the action of ionic liquid tetrapropylammonium glycine ([N(3333)][Gly]). It is shown that the as-prepared porous worm-like Au has the length from 0.3 to 0.6 μm and the width of approximately 100–150 nm, and it is composed of lots of small nanoparticles about 6–12 nm in diameter. With rhodamine 6G (R6G) as a probe molecule, porous worm-like Au displays remarkable surface enhanced Raman scattering (SERS) sensitivity (detection limit is lower than 10(−13) M), and extremely high reproducibility (average relative standard deviations is less than 2%). At the same time, owing to significantly high specific surface area, various pore sizes and plenty of crystal defects, porous worm-like Au also exhibits excellent catalytic performance in the reduction of nitroaromatics, such as p-nitrophenol and p-nitroaniline, which can be completely converted within only 100 s and 150 s, respectively. It is expected that the as-prepared porous worm-like Au with porous and self-supported structures will also present the encouraging advances in electrocatalysis, sensing, and many others.