Cargando…

SMA-Assisted Exfoliation of Graphite by Microfluidization for Efficient and Large-Scale Production of High-Quality Graphene

In this paper, the sodium salt of styrene-maleic anhydride copolymer (SMA) was used as a stabilizer in the process of graphite exfoliation to few-layer graphene using the technique of microfluidization in water. This method is simple, scalable, and cost-effective, and it produces graphene at concent...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuzhou, Zhang, Xianye, Liu, Haihui, Zhang, Xingxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955778/
https://www.ncbi.nlm.nih.gov/pubmed/31766336
http://dx.doi.org/10.3390/nano9121653
Descripción
Sumario:In this paper, the sodium salt of styrene-maleic anhydride copolymer (SMA) was used as a stabilizer in the process of graphite exfoliation to few-layer graphene using the technique of microfluidization in water. This method is simple, scalable, and cost-effective, and it produces graphene at concentrations as high as 0.522 mg mL(−1). The generated high-quality graphene consists of few-layer sheets with a uniform size of less than 1 μm. The obtained graphene was uniformly dispersed and tightly integrated into a polyamide 66 (PA66) matrix to create high-performance multifunctional polymer nanocomposites. The tensile strength and thermal conductivity of 0.3 and 0.5 wt% EG/PA66 composites were found to be ~32.6% and ~28.8% greater than the corresponding values calculated for pure PA66, respectively. This confirms that the new protocol of liquid phase exfoliation of graphite has excellent potential for use in the industrial-scale production of high-quality graphene for numerous applications.