Cargando…
Low Complexity Automatic Stationary Wavelet Transform for Elimination of Eye Blinks from EEG
The electroencephalogram signal (EEG) often suffers from various artifacts and noises that have physiological and non-physiological origins. Among these artifacts, eye blink, due to its amplitude is considered to have the most influence on EEG analysis. In this paper, a low complexity approach based...
Autores principales: | Shahbakhti, Mohammad, Maugeon, Maxime, Beiramvand, Matin, Marozas, Vaidotas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955982/ https://www.ncbi.nlm.nih.gov/pubmed/31810263 http://dx.doi.org/10.3390/brainsci9120352 |
Ejemplares similares
-
Prediction of Preterm Delivery from Unbalanced EHG Database
por: Mohammadi Far, Somayeh, et al.
Publicado: (2022) -
Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks
por: Mohammadi Far, Somayeh, et al.
Publicado: (2023) -
BlinkLinMulT: Transformer-Based Eye Blink Detection
por: Fodor, Ádám, et al.
Publicado: (2023) -
Hybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal
por: Mannan, Malik M. Naeem, et al.
Publicado: (2016) -
Automatic and Direct Identification of Blink Components from Scalp EEG
por: Kong, Wanzeng, et al.
Publicado: (2013)