Cargando…
Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis
Electroencephalography (EEG) signals are frequently contaminated with unwanted electrooculographic (EOG) artifacts. Blinks and eye movements generate large amplitude peaks that corrupt EEG measurements. Independent component analysis (ICA) has been used extensively in manual and automatic methods to...
Autores principales: | Issa, Mohamed F., Juhasz, Zoltan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956025/ https://www.ncbi.nlm.nih.gov/pubmed/31817120 http://dx.doi.org/10.3390/brainsci9120355 |
Ejemplares similares
-
Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals
por: Yedukondalu, Jammisetty, et al.
Publicado: (2023) -
Removal of EOG Artifacts from EEG Recordings Using Stationary Subspace Analysis
por: Zeng, Hong, et al.
Publicado: (2014) -
A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques
por: Klados, Manousos A., et al.
Publicado: (2016) -
Improved Cognitive Vigilance Assessment after Artifact Reduction with Wavelet Independent Component Analysis
por: Abu Farha, Nadia, et al.
Publicado: (2022) -
EOG Signal Classification with Wavelet and Supervised Learning Algorithms KNN, SVM and DT
por: Hernández Pérez, Sandy Nohemy, et al.
Publicado: (2023)