Cargando…
Classification of Drowsiness Levels Based on a Deep Spatio-Temporal Convolutional Bidirectional LSTM Network Using Electroencephalography Signals
Non-invasive brain-computer interfaces (BCI) have been developed for recognizing human mental states with high accuracy and for decoding various types of mental conditions. In particular, accurately decoding a pilot’s mental state is a critical issue as more than 70% of aviation accidents are caused...
Autores principales: | Jeong, Ji-Hoon, Yu, Baek-Woon, Lee, Dae-Hyeok, Lee, Seong-Whan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956039/ https://www.ncbi.nlm.nih.gov/pubmed/31795445 http://dx.doi.org/10.3390/brainsci9120348 |
Ejemplares similares
-
Hybrid attention-based temporal convolutional bidirectional LSTM approach for wind speed interval prediction
por: Bommidi, Bala Saibabu, et al.
Publicado: (2023) -
Bidirectional convolutional LSTM for the prediction of nitrogen dioxide in the city of Madrid
por: Iskandaryan, Ditsuhi, et al.
Publicado: (2022) -
An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data
por: Houshmand, Sara, et al.
Publicado: (2022) -
Driving Drowsiness Detection Using Fusion of Electroencephalography, Electrooculography, and Driving Quality Signals
por: Noori, Seyed Mohammad Reza, et al.
Publicado: (2016) -
Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism
por: Kim, Kyutae, et al.
Publicado: (2020)