Cargando…
The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain
A comprehensive insight into the electronic and optical properties of small-lattice-mismatched InSe-GeTe heterobilayer (HBL) is performed based on the density functional theory (DFT) with van der Waals corrections from first-principles perspective. The optimization of most stable geometric stacking...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956121/ https://www.ncbi.nlm.nih.gov/pubmed/31795272 http://dx.doi.org/10.3390/nano9121705 |
Sumario: | A comprehensive insight into the electronic and optical properties of small-lattice-mismatched InSe-GeTe heterobilayer (HBL) is performed based on the density functional theory (DFT) with van der Waals corrections from first-principles perspective. The optimization of most stable geometric stacking mode for the InSe-GeTe HBL is demonstrated. In addition, it is found that the InSe-GeTe HBL forms a type-II heterostructure of staggered-gap band alignment, resulting in an indirect band gap of 0.78 eV, which could be employed as a separator for electron-hole pairs. Moreover, the influence of biaxial strain on the electronic and optical properties of the InSe-GeTe HBL are systematically explored by calculating the band structures, density of states (PDOS), electron density differences, and optical absorption spectra of InSe-GeTe HBL under compressive and tensile biaxial strains. The results indicate that the electronic structures and optical performance of InSe-GeTe HBL could be modulated by changing the biaxial strain conveniently. Our findings provide new opportunities for the novel InSe-GeTe HBL to be applied in the electronic and optoelectronic fields. |
---|