Cargando…

The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain

A comprehensive insight into the electronic and optical properties of small-lattice-mismatched InSe-GeTe heterobilayer (HBL) is performed based on the density functional theory (DFT) with van der Waals corrections from first-principles perspective. The optimization of most stable geometric stacking...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Guofeng, Sun, Rui, Gu, Yan, Xie, Feng, Ding, Yu, Zhang, Xiumei, Wang, Yueke, Hua, Bin, Ni, Xianfeng, Fan, Qian, Gu, Xing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956121/
https://www.ncbi.nlm.nih.gov/pubmed/31795272
http://dx.doi.org/10.3390/nano9121705
_version_ 1783487087340683264
author Yang, Guofeng
Sun, Rui
Gu, Yan
Xie, Feng
Ding, Yu
Zhang, Xiumei
Wang, Yueke
Hua, Bin
Ni, Xianfeng
Fan, Qian
Gu, Xing
author_facet Yang, Guofeng
Sun, Rui
Gu, Yan
Xie, Feng
Ding, Yu
Zhang, Xiumei
Wang, Yueke
Hua, Bin
Ni, Xianfeng
Fan, Qian
Gu, Xing
author_sort Yang, Guofeng
collection PubMed
description A comprehensive insight into the electronic and optical properties of small-lattice-mismatched InSe-GeTe heterobilayer (HBL) is performed based on the density functional theory (DFT) with van der Waals corrections from first-principles perspective. The optimization of most stable geometric stacking mode for the InSe-GeTe HBL is demonstrated. In addition, it is found that the InSe-GeTe HBL forms a type-II heterostructure of staggered-gap band alignment, resulting in an indirect band gap of 0.78 eV, which could be employed as a separator for electron-hole pairs. Moreover, the influence of biaxial strain on the electronic and optical properties of the InSe-GeTe HBL are systematically explored by calculating the band structures, density of states (PDOS), electron density differences, and optical absorption spectra of InSe-GeTe HBL under compressive and tensile biaxial strains. The results indicate that the electronic structures and optical performance of InSe-GeTe HBL could be modulated by changing the biaxial strain conveniently. Our findings provide new opportunities for the novel InSe-GeTe HBL to be applied in the electronic and optoelectronic fields.
format Online
Article
Text
id pubmed-6956121
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-69561212020-01-23 The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain Yang, Guofeng Sun, Rui Gu, Yan Xie, Feng Ding, Yu Zhang, Xiumei Wang, Yueke Hua, Bin Ni, Xianfeng Fan, Qian Gu, Xing Nanomaterials (Basel) Article A comprehensive insight into the electronic and optical properties of small-lattice-mismatched InSe-GeTe heterobilayer (HBL) is performed based on the density functional theory (DFT) with van der Waals corrections from first-principles perspective. The optimization of most stable geometric stacking mode for the InSe-GeTe HBL is demonstrated. In addition, it is found that the InSe-GeTe HBL forms a type-II heterostructure of staggered-gap band alignment, resulting in an indirect band gap of 0.78 eV, which could be employed as a separator for electron-hole pairs. Moreover, the influence of biaxial strain on the electronic and optical properties of the InSe-GeTe HBL are systematically explored by calculating the band structures, density of states (PDOS), electron density differences, and optical absorption spectra of InSe-GeTe HBL under compressive and tensile biaxial strains. The results indicate that the electronic structures and optical performance of InSe-GeTe HBL could be modulated by changing the biaxial strain conveniently. Our findings provide new opportunities for the novel InSe-GeTe HBL to be applied in the electronic and optoelectronic fields. MDPI 2019-11-28 /pmc/articles/PMC6956121/ /pubmed/31795272 http://dx.doi.org/10.3390/nano9121705 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yang, Guofeng
Sun, Rui
Gu, Yan
Xie, Feng
Ding, Yu
Zhang, Xiumei
Wang, Yueke
Hua, Bin
Ni, Xianfeng
Fan, Qian
Gu, Xing
The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain
title The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain
title_full The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain
title_fullStr The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain
title_full_unstemmed The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain
title_short The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain
title_sort electronic and optical properties of inse-gete heterobilayer via applying biaxial strain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956121/
https://www.ncbi.nlm.nih.gov/pubmed/31795272
http://dx.doi.org/10.3390/nano9121705
work_keys_str_mv AT yangguofeng theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT sunrui theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT guyan theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT xiefeng theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT dingyu theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT zhangxiumei theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT wangyueke theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT huabin theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT nixianfeng theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT fanqian theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT guxing theelectronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT yangguofeng electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT sunrui electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT guyan electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT xiefeng electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT dingyu electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT zhangxiumei electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT wangyueke electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT huabin electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT nixianfeng electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT fanqian electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain
AT guxing electronicandopticalpropertiesofinsegeteheterobilayerviaapplyingbiaxialstrain