Cargando…

Enhanced Antifungal Activities of Eugenol-Entrapped Casein Nanoparticles against Anthracnose in Postharvest Fruits

This study aims to improve the antifungal effects of eugenol through low-energy self-assembly fabrication and optimization of eugenol-casein nanoparticles (EC-NPs). Optimized EC-NPs (eugenol/casein ratio of 1:5) were obtained with a mean size of 307.4 ± 2.5 nm and entrapment efficiency of 86.3% ± 0....

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Yang, Zhou, Shitong, Fan, Chenyue, Du, Qizhen, Jin, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956159/
https://www.ncbi.nlm.nih.gov/pubmed/31847287
http://dx.doi.org/10.3390/nano9121777
Descripción
Sumario:This study aims to improve the antifungal effects of eugenol through low-energy self-assembly fabrication and optimization of eugenol-casein nanoparticles (EC-NPs). Optimized EC-NPs (eugenol/casein ratio of 1:5) were obtained with a mean size of 307.4 ± 2.5 nm and entrapment efficiency of 86.3% ± 0.2%, and showed high stability under incubated at 20 and 37 °C for 48 h. EC-NPs exhibited satisfactory sustained-release effect at 20 °C or 37 °C, with remaining eugenols amounts of 79.51% and 53.41% after 72 h incubation, respectively, which were significantly higher than that of native eugenol (only 26.40% and 19.82% after the first 12 h). EC-NPs exhibited a greater antifungal activity (>95.7%) against spore germination of fungus that was greater than that of native eugenol, showed 100% inhibition of the anthracnose incidence in postharvest pear after 7 d. EC-NPs is potential as an environmental-friendly preservatives in the food industry.