Cargando…

Flow Process for Ketone Reduction Using a Superabsorber-Immobilized Alcohol Dehydrogenase from Lactobacillus brevis in a Packed-Bed Reactor

Flow processes and enzyme immobilization have gained much attention over the past few years in the field of biocatalytic process design. Downstream processes and enzyme stability can be immensely simplified and improved. In this work, we report the utilization of polymer network-entrapped enzymes an...

Descripción completa

Detalles Bibliográficos
Autores principales: Adebar, Niklas, Gröger, Harald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956264/
https://www.ncbi.nlm.nih.gov/pubmed/31653007
http://dx.doi.org/10.3390/bioengineering6040099
Descripción
Sumario:Flow processes and enzyme immobilization have gained much attention over the past few years in the field of biocatalytic process design. Downstream processes and enzyme stability can be immensely simplified and improved. In this work, we report the utilization of polymer network-entrapped enzymes and their applicability in flow processes. We focused on the superabsorber-based immobilization of an alcohol dehydrogenase (ADH) from Lactobacillus brevis and its application for a reduction of acetophenone. The applicability of this immobilization technique for a biotransformation running in a packed bed reactor was then demonstrated. Towards this end, the immobilized system was intensively studied, first in a batch mode, leading to >90% conversion within 24 h under optimized conditions. A subsequent transfer of this method into a flow process was conducted, resulting in very high initial conversions of up to 67% in such a continuously running process.