Cargando…

Observation of Single Nanoparticle Collisions with Green Synthesized Pt, Au, and Ag Nanoparticles Using Electrocatalytic Signal Amplification Method

This work describes the tailored design, green synthesis and characterization of noble metal (Pt, Ag and Au) nanoparticles (NPs) using Sapinduss Mukkorossi fruit extract (SMFE) and its signal NP collision signal response, based on the principle of the electrocatatlytic amplication (EA) method. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Sundar, Sasikala, Kim, Ki Jun, Kwon, Seong Jung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956323/
https://www.ncbi.nlm.nih.gov/pubmed/31783669
http://dx.doi.org/10.3390/nano9121695
Descripción
Sumario:This work describes the tailored design, green synthesis and characterization of noble metal (Pt, Ag and Au) nanoparticles (NPs) using Sapinduss Mukkorossi fruit extract (SMFE) and its signal NP collision signal response, based on the principle of the electrocatatlytic amplication (EA) method. Here, the SMFE can act as both the reducing and the capping agent for the fabrication of noble nanometals. The SMFE-capped NPs was available for the observation of a single NP collision signal. Two general types of current response were observed: a staircase current response for the Pt or Au NPs, and a blip/spike current response for Ag NPs. These results demonstrated that the eco-friendly synthesized SMFE-capped NPs maintained their electrocatalytic activity, therefore they can be used for the single NP experiments and place an arena for future biosensing applications.