Cargando…
A Hybrid Feature Pool-Based Emotional Stress State Detection Algorithm Using EEG Signals
Human stress analysis using electroencephalogram (EEG) signals requires a detailed and domain-specific information pool to develop an effective machine learning model. In this study, a multi-domain hybrid feature pool is designed to identify most of the important information from the signal. The hyb...
Autores principales: | Hasan, Md Junayed, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956373/ https://www.ncbi.nlm.nih.gov/pubmed/31847238 http://dx.doi.org/10.3390/brainsci9120376 |
Ejemplares similares
-
Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals
por: Shon, Dongkoo, et al.
Publicado: (2018) -
A Novel Pipeline Leak Detection Technique Based on Acoustic Emission Features and Two-Sample Kolmogorov–Smirnov Test
por: Rai, Akhand, et al.
Publicado: (2021) -
A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions
por: Hasan, Md Junayed, et al.
Publicado: (2020) -
An Explainable AI-Based Fault Diagnosis Model for Bearings
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using Multidomain Fusion-Based Vibration Imaging and Multitask Learning
por: Hasan, Md Junayed, et al.
Publicado: (2021)