Cargando…
Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images combined with HPV types
The aim of the present study was to explore the feasibility of using deep learning, such as artificial intelligence (AI), to classify cervical squamous epithelial lesions (SILs) from colposcopy images combined with human papilloma virus (HPV) types. Among 330 patients who underwent colposcopy and bi...
Autores principales: | Miyagi, Yasunari, Takehara, Kazuhiro, Nagayasu, Yoko, Miyake, Takahito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956417/ https://www.ncbi.nlm.nih.gov/pubmed/31966086 http://dx.doi.org/10.3892/ol.2019.11214 |
Ejemplares similares
-
Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images
por: Miyagi, Yasunari, et al.
Publicado: (2019) -
Detection of cervical high-grade squamous intraepithelial lesions and assessing diagnostic performance of colposcopy among women with oncogenic HPV
por: Li, Xiaoxiao, et al.
Publicado: (2023) -
The application of deep learning based diagnostic system to cervical squamous intraepithelial lesions recognition in colposcopy images
por: Yuan, Chunnv, et al.
Publicado: (2020) -
Concordance Rate of Colposcopy in Detecting Cervical Intraepithelial Lesions
por: Stuebs, Frederik A., et al.
Publicado: (2022) -
Cervical, anal and oral HPV detection and HPV type concordance among women referred for colposcopy
por: Nasioutziki, Maria, et al.
Publicado: (2020)