Cargando…
Identification of osteosarcoma driver genes using a network method
Osteosarcoma (OS) is a severe disease that is generally caused by genetic alterations. Systematic identification of driver genes may be used to increase the understanding of the mechanisms underlying the disease. The present study identified a framework to predict driver genes, with the hypothesis t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956419/ https://www.ncbi.nlm.nih.gov/pubmed/31966051 http://dx.doi.org/10.3892/ol.2019.11212 |
Sumario: | Osteosarcoma (OS) is a severe disease that is generally caused by genetic alterations. Systematic identification of driver genes may be used to increase the understanding of the mechanisms underlying the disease. The present study identified a framework to predict driver genes, with the hypothesis that driver genes operate through a number of connected functional genes. OS-related genes were extracted from the Catalogue Of Somatic Mutations In Cancer and subsequently ranked by virtue of their effect on a set of functional genes using a network-based algorithm. This revealed the driver genes associated with dysregulated networks. In addition, compared with the Mutations For Functional Impact on Network Neighbors algorithm, the results obtained using the aforementioned network-based algorithm revealed that the proposed method is effective. Gene functional analysis demonstrated that the potential OS driver genes were involved in OS-associated pathways. Through the validation of the 15 candidate OS driver genes, the classifier constructed in the present study revealed that the identified driver genes were able to distinguish 184 cancer samples from controls. Therefore, the present study provided insights into the identification of driver genes from a vast amount of sequencing data. |
---|